ORIGINAL PAPER
Low and high-intensity water-based training equally improve disability and functional performance in women with multiple sclerosis but has no effects on IL10, IL17, and S100 protein biomarkers
More details
Hide details
1
Sports Physiology Department, Faculty of Sports Sciences, Hakim Sabzevari University, Sabzevar, Iran
2
Sports Physiology Department, Faculty of Sports Sciences, Ferdowsi University, Mashhad, Iran
3
Isfahan Faculty of Medical Sciences, Isfahan, Iran
4
Department of Sports Sciences, Faculty of Literature and Humanities, Zabol University, Zabol, Iran
5
Federal University of Goias, Goiania, Brazil
6
Kosar University of Bojnord, Bojnord, Iran
7
Department of General Courses, School of Management and Medical Information Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
Submission date: 2024-07-08
Acceptance date: 2024-12-04
Publication date: 2025-03-31
Corresponding author
Paulo Gentil
Federal University of Goias, Av. Esperança, s/n – Chácaras de Recreio Samambaia,
Goiânia, GO, 74690-900, Brazil
Hum Mov. 2025;26(1):81-90
KEYWORDS
TOPICS
ABSTRACT
Purpose:
Multiple sclerosis (MS) is a demyelinating neurodegenerative disease of the central nervous system that involves a wide range of symptoms including loss of physical function. This study investigated the effects of eight weeks of water exercise training with two different intensities on Interleukin 10 (IL10), Interleukin 17 (IL17), and low molecular-weight calcium-binding proteins (S100), disability, and functional performance in women with MS.
Methods:
Forty-five relapsing-remitting women with MS and an Expanded Disability Status Scale (EDSS) score 3.5 were randomly divided into three groups: water-based low-intensity aerobic training (LIT), water-based high-intensity aerobic training (HIT), and a control group (CON). After eight weeks of water-based exercises, blood samples were collected 24 hours before the first session and 48 hours after the last training session. Physical performance was evaluated using a 30-second sit-to-stand test, the total number of elbow flexions performed with 2.5 kg dumbbells, 2-minute walking distances, and a timed up-and-go test (TUG).
Results:
There were no significant differences within or between groups in IL10, IL17, and S100 indices (p > 0.05). A significant difference was observed in the disability and functional indices after eight weeks, with higher values for the LIT and HIT groups compared to the CON group (p < 0.01), with no difference between them.
Conclusions:
Eight weeks of water-based exercises improve functional disability in patients with MS despite no changes in inflammatory biomarkers.
REFERENCES (49)
1.
Gil-González I, Martín-Rodríguez A, Conrad R, Pérez-San-Gregorio MÁ. Quality of life in adults with multiple sclerosis: a systematic review. BMJ Open. 2020;10(11):e041249; doi: 10.1136/bmjopen- 2020-041249.
2.
Hoang PD, Lord S, Gandevia S, Menant J. Exercise and Sports Science Australia (ESSA) position statement on exercise for people with mild to moderate multiple sclerosis. J Sci Med Sport. 2022;25(2):146–54; doi: 10.1016/j.jsams.2021.08. 015.
3.
Silva BA, Miglietta EA, Ferrari CC. Training the brain: could it improve multiple sclerosis treatment?. Rev Neurosci. 2020;31(7):779–92; doi: 10.1515/revneuro-2020-0014.
4.
Walton C, King R, Rechtman L, Kaye W, Leray E, Marrie RA, Robertson N, La Rocca N, Uitdehaag B, van der Mei I, Wallin M, Helme A, Napier CA, Rijke N. Rising prevalence of multiple sclerosis worldwide: insights from the Atlas of MS. Mult Scler J. 2020;26(14):1816–21; doi: 10.1177/1352 458520970841.
5.
Amiri M. Multiple sclerosis in Iran: an epidemiological update with focus on air pollution debate. J Clin Transl Res. 2021;7(1):49–60.
6.
Eskandarieh S, Ayoubi S, Sahraian MA. The prevalence of multiple sclerosis in Tehran, Iran, in 2020. Curr J Neurol. 2023;22(1):63–4; doi: 10.18502/ cjn.v22i1.12619.
7.
Danikowski K, Jayaraman S, Prabhakar B. Regulatory T cells in multiple sclerosis and myasthenia gravis. J Neuroinflammation. 2017;14:117. doi: 10.1186/s12974-017-0892-8.
8.
Kargarfard M, Shariat A, Ingle L, Cleland JA, Kargarfard M. Randomized controlled trial to examine the impact of aquatic exercise training on functional capacity, balance, and perceptions of fatigue in female patients with multiple sclerosis. Arch Phys Med Rehabil. 2018;99(2):234–41; doi: 10.1016/j.apmr.2017.06.015.
9.
Negaresh R, Motl R, Zimmer P, Mokhtarzade M, Baker J. Effects of exercise training on multiple sclerosis biomarkers of central nervous system and disease status: a systematic review of intervention studies. Eur J Neurol. 2019;26(5):711–21; doi: 10.1111/ene.13929.
10.
Khan AW, Farooq M, Hwang M-J, Haseeb M, Choi S. Autoimmune neuroinflammatory diseases: role of interleukins. Int J Mol Sci. 2023;24(9): 7960; doi: 10.3390/ijms24097960.
11.
Chung S-H, Ye X-Q, Iwakura Y. Interleukin-17 family members in health and disease. Int Immunol. 2021;33(12):723–9; doi: 10.1093/intimm/ dxab075.
12.
Rauf A, Badoni H, Abu-Izneid T, Olatunde A, Rahman MM, Painuli S, Semwal P, Wilairatana P, Mubarak MS. Neuroinflammatory markers: key indicators in the pathology of neurodegenerative diseases. Molecules. 2022;27(10):3194; doi: 10.3390/ molecules27103194.
13.
Kucuksezer UC, Aktas Cetin E, Esen F, Tahrali I, Akdeniz N, Gelmez MY, Deniz G. The role of natural killer cells in autoimmune diseases. Front Immunol. 2021;12:622306; doi: 10.3389/fimmu.2021. 622306.
14.
Porro C, Cianciulli A, Panaro MA. The regulatory role of IL-10 in neurodegenerative diseases. Biomolecules. 2020;10(7):1017; doi: 10.3390/biom 10071017.
15.
Filipi ML, Leuschen MP, Huisinga J, Schmaderer L, Vogel J, Kucera D, Stergiou N. Impact of resistance training on balance and gait in multiple sclerosis. Int J MS Care. Int J MS Care. 2010;12(1): 6–12; doi: 10.7224/1537-2073-12.1.6.
16.
Nishihara H, Perriot S, Gastfriend BD, Steinfort M, Cibien C, Soldati S, Matsuo K, Guimbal S, Mathias A, Palecek SP, Shusta EV, Du Pasquier R, Engelhardt B. Intrinsic blood–brain barrier dysfunction contributes to multiple sclerosis pathogenesis. Brain. 2022;145(12):4334–48; doi: 10.1093/brain/ awac019.
17.
Amatya B, Khan F, Galea M. Rehabilitation for people with multiple sclerosis: an overview of Cochrane Reviews. Cochrane Database Syst Rev. 2019;1:CD012732. doi: 10.1002/14651858.CD0 12732.pub2.
18.
Gitman V, Moss K, Hodgson D. A systematic review and meta-analysis of the effects of non-pharmacological interventions on quality of life in adults with multiple sclerosis. Eur J Med Res. 2023;28(1): 294; doi: 10.1186/s40001-023-01185-5.
19.
Haghighi AH, Ahmadi A, Carotenuto A, Askari R, Nikkhah K, Bagherzadeh-Rahmani B, Sharabadi H, Souza D, Gentil P. Effects of concurrent training and CoQ10 on neurotrophic factors and physical function in people with multiple sclerosis: a pilot study. Eur J Transl Myol. 2023;33(2): 11253; doi: 10.4081/ejtm.2023.11253.
20.
de Assis GG, da Silva TA, Dantas PMS. Dual-task exercise as a therapy for executive motor function in Parkinson’s disease. Hum Mov. 2018;19(1):57– 63; doi.org/10.5114/hm.2018.73613.
21.
Negaresh R, Motl RW, Mokhtarzade M, Dalgas U, Patel D, Shamsi MM, Majdinasab N, Ranjbar R, Zimmer P, Baker JS. Effects of exercise training on cytokines and adipokines in multiple sclerosis: a systematic review. Mult Scler Related Disord. 2018;24:91–100; doi: 10.1016/j.msard.2018.06.008.
22.
Bansi J, Bloch W, Gamper U, Kesselring J. Training in MS: influence of two different endurance training protocols (aquatic versus overland) on cytokine and neurotrophin concentrations during three week randomised controlled trial. Mult Scl J. 2013;19(5):613–21.
23.
Methajarunon P, Eitivipart C, Diver CJ, Foongchomcheay A. Systematic review of published studies on aquatic exercise for balance in patients with multiple sclerosis, Parkinson’s disease, and hemiplegia. Hong Kong Physiother J. 2016;35:12–20; doi: 10.1016/j.hkpj.2016.03.00.
24.
Christogianni A, Bibb R, Davis SL, Jay O, Barnett M, Evangelou N, Filingeri D. Temperature sensitivity in multiple sclerosis: an overview of its impact on sensory and cognitive symptoms. Temperature. 2018;5(3):208–23; doi: 10.1080/23328940.2018. 1475831.
25.
Faíl LB, Marinho DA, Marques EA, Costa MJ, Santos CC, Marques MC, Izquierdo M, Neiva HP. Benefits of aquatic exercise in adults with and without chronic disease – a systematic review with meta-analysis. Scand J Med Sci Sports. 2022; 32(3):465–86; doi: 10.1111/sms.14112.
26.
Plecash AR, Leavitt BR. Aquatherapy for neurodegenerative disorders. J Huntingtons Disease. 2014;3(1):5–11; doi: 10.3233/JHD-140010.
27.
Bae M, Kasser SL. High intensity exercise training on functional outcomes in persons with multiple sclerosis: a systematic review. Mult Scler Relat Disord. 2023;75:104748; doi: 10.1016/j.msard. 2023.104748.
28.
Campbell E, Coulter EH, Paul L. High intensity interval training for people with multiple sclerosis: a systematic review. Mult Scler Relat Disord. 2018; 24:55–63; doi: 10.1016/j.msard.2018.06.005.
29.
Corrini C, Gervasoni E, Perini G, Cosentino C, Putzolu M, Montesano A, Pelosin E, Prosperini L, Cattaneo D. Mobility and balance rehabilitation in multiple sclerosis: a systematic review and doseresponse meta-analysis. Mult Scler Relat Disord. 2023;69:104424; doi: 10.1016/j.msard.2022.10 4424.
30.
Hortobágyi T, Vetrovsky T, Balbim GM, Silva NCBS, Manca A, Deriu F, Kolmos M, Kruuse C, Liu-Ambrose T, Radák Z, Váczi M, Johansson H, Dos Santos PCR, Franzén E, Granacher U. The impact of aerobic and resistance training intensity on markers of neuroplasticity in health and disease. Ageing Res Rev. 2022;80:101698; doi: 10.1016/j.arr.2022.101698.
31.
Tanaka H, Monahan KD, Seals DR. Age-predicted maximal heart rate revisited. J Am Coll Cardiol. 2001;37(1):153–6; doi: 10.1016/s0735-1097(00) 01054-8.
32.
Meyer-Moock S, Feng Y-S, Maeurer M, Dippel F-W, Kohlmann T. Systematic literature review and validity evaluation of the Expanded Disability Status Scale (EDSS) and the Multiple Sclerosis Functional Composite (MSFC) in patients with multiple sclerosis. BMC Neurol. 2014;14:58; doi: 10.1186/1471-2377-14-58.
33.
Rikli RE, Jones CJ. Development and validation of a functional fitness test for community-residing older adults. J Aging Phys Act. 1999;7(2):129– 61; doi: 10.1123/japa.7.2.129.
34.
Saquetto MB, Dos Santos MR, Alves IGN, Queiroz RS, Machado RM, Neto MG. Effects of waterbased exercises on functioning of postmenopausal women: a systematic review with meta-analysis. Exp Gerontol. 2022;166:111875; doi: 10.1016/j. exger.2022.111875.
35.
Guimarães ALA, Gomes-Neto M, Conceição LSR, Saquetto MB, Gois CO, Carvalho VO. Water-based exercises on peak oxygen consumption, exercise time, and muscle strength in patients with coronary artery disease: a systematic review with metaanalysis. Cardiovasc Ther. 2023;2023(1):43054 74; doi: 10.1155/2023/4305474.
36.
Barbalho M, Coswig VS, Bottaro M, De Lira CAB, Campos MH, Vieira CA, Gentil P. “NO LOAD” resistance training increases functional capacity and muscle size in hospitalised female patients: a pilot study. Eur J Transl Myol. 2019;29(4):8492. doi: 10.4081/ejtm.2019.8492.
37.
Silva MH, De Lira CAB, Steele J, Fisher JP, Mota JF, Gomes AC, Gentil P. Cycle ergometer training and resistance training similarly increase muscle strength in trained men. J Sports Sci. 2022; 40(5):583–90; doi: 10.1080/02640414.2021.200 5282.
38.
McNamara RJ, McKeough ZJ, McKenzie DK, Alison JA. Water-based exercise training for chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2013;12:CD008290; doi: 10.1002/ 14651858.CD008290.pub2.
39.
Volaklis KA, Spassis AT, Tokmakidis SP. Land versus water exercise in patients with coronary artery disease: effects on body composition, blood lipids, and physical fitness. Am Heart J. 2007; 154(3):560.e1–6; doi: 10.1016/j.ahj.2007.06.029.
40.
Dendrou CA, Fugger L, Friese MA. Immunopathology of multiple sclerosis. Nat Rev Immunol. 2015;15(9):545–58; doi: 10.1038/nri3871.
41.
Ding Y, Xu X. Anti-inflammatory effect of exercise training through reducing inflammasome activation-related inflammatory cytokine levels in overweight/obese populations: a systematic review and meta-analysis. Complement Ther Clin Pract. 2022; 49:101656; doi: 10.1016/j.ctcp.2022. 101656.
42.
Clarke J. Exercise exerts anti-inflammatory effects on muscle via the JAK–STAT pathway. Nat Rev Rheumatol. 2021;17(3):127; doi: 10.1038/ s41584-021-00581-7.
43.
Wens I, Keytsman C, Deckx N, Cools N, Dalgas U, Eijnde BO. Brain derived neurotrophic factor in multiple sclerosis: effect of 24 weeks endurance and resistance training. Eur J Neurol. 2016;23(6): 1028–35; doi: 10.1111/ene.12976.
44.
Schulz K-H, Gold SM, Witte J, Bartsch K, Lang UE, Hellweg R, Reern R, Braumann K-M, Heesen C. Impact of aerobic training on immune-endocrine parameters, neurotrophic factors, quality of life and coordinative function in multiple sclerosis. J Neurol Sci. 2004;225(1–2):11–8; doi: 10.1016/ j.jns.2004.06.009.
45.
Kordi MR, Anooshe L, Khodadade S, Maghsodi N, Sanglachi B, Hemmatinafar M. Comparing the effect of three methods of combined training on serum levels of ghrelin, pro and anti-inflammatory cytokines in multiple sclerosis (MS) patients. J Adv Med Biomed Res. 2014;22(91):39–51.
46.
Kebir H, Kreymborg K, Ifergan I, Dodelet-Devillers A, Cayrol R, Bernard M, Giuliani F, Arbour N, Becher B, Prat A. Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nat Med. 2007; 13(10):1173–5; doi: 10.1038/nm1651.
47.
Stromnes IM, Cerretti LM, Liggitt D, Harris RA, Goverman JM. Differential regulation of central nervous system autoimmunity by TH1 and TH17 cells. Nat Med. 2008;14(3):337–42; doi: 10.1038/ nm1715.
48.
Heidarianpour A, Rezazadeh MV, Zamani A. Effect of moderate exercise on serum interferongamma and interleukin-17 levels in the morphine withdrawal period. Int J High Risk Behav Addict. 2016;5(2):e26907. doi: 10.5812/ijhrba.26907.
49.
Lowder T, Dugger K, Deshane J, Estell K, Schwiebert LM. Repeated bouts of aerobic exercise enhance regulatory T cell responses in a murine asthma model. Brain Behav Immun. 2010;24(1):153–9; doi: 10.1016/j.bbi.2009.09.011.