ORIGINAL PAPER
Physiological drift during steady-state exercise based on the incremental Talk Test
More details
Hide details
1
Department of Exercise and Sport Science, University of Wisconsin-La Crosse, La Crosse, USA
2
Faculty of Kinesiology, University of Zagreb, Zagreb, Croatia
3
School of Physical Education, University of Campinas, Campinas, Brazil
4
Faculty of Physical Activity and Sports Sciences, University of León, León, Spain
5
Center for Sport Studies, Rey Juan Carlos University, Madrid, Spain
6
Department of Human Sciences, Society and Health, University of Cassino and Lazio Meridionale, Cassino, Italy
7
Department of Human Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
8
Department of Medicine and Aging Sciences, University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
Submission date: 2024-11-15
Acceptance date: 2025-01-02
Publication date: 2025-03-31
Corresponding author
Cristina Cortis
Department of Human Sciences, Society and Health, University of Cassino
and Lazio Meridionale, Via S. Angelo – Località Folcara, 03043 Cassino (FR)
Hum Mov. 2025;26(1):71-80
KEYWORDS
TOPICS
ABSTRACT
Purpose:
The Talk Test (TT ) is recognised as a practical method for prescribing exercise intensity during incremental exercise, although its applicability to prolonged steady-state exercise – particularly with respect to physiological drift – remains underexplored. Therefore, this study aimed to evaluate whether workloads at different TT stages during incremental exercise predict responses during steady-state training.
Methods:
Well-trained individuals (1–3 h of hiking, 3–4 times per week) performed incremental exercise (2-min stages) to determine the equivocal (EQ), last positive (LP) and last positive-1 (LP-1) TT stages. Participants then completed 60-min uphill walking bouts at LP-1, LP and EQ intensities in random order. Repeated measures ANOVA with Tukey post-hoc tests assessed differences in physiological drift across TT stages during steady-state exercise.
Results:
During LP-1 and LP bouts, stable conditions were observed for the percentage of maximum heart rate (% HRmax) (< 85% HRmax), rating of perceived exertion (RPE) (< 4/10), blood lactate (2–3 mmol · l–1) and TT score (~1.2/3). In contrast, during EQ, all values showed significant drift, including HR (> 95% HRmax), RPE (~7/10), blood lactate (~7 mmol · l–1) and TT score (~2.4/3).
Conclusions:
Training intensity based on LP-1 or LP incremental TT provides conditions consistent with the moderate-intensity domain, with minimal drift during 60-min exercise. Steady-state exercise at the intensity of the EQ stage results in significant drift, comparable with the heavy or severe exercise domain (> maximal lactate steady-state). These findings suggest that TT -based intensities, particularly LP-1, may be suitable for prolonged training in physically active individuals, to build endurance. Future research should investigate the applicability of the TT in athletes, particularly its effectiveness for prolonged exercise.
REFERENCES (46)
1.
Poole DC, Jones AM. Oxygen uptake kinetics. Compr Physiol. 2012;2(2):933–96; doi: 10.1002/ cphy.c100072.
2.
Jamnick NA, Pettitt RW, Granata C, Pyne DB, Bishop DJ. An examination and critique of current methods to determine exercise intensity. Sport Med. 2020;50(10):1729–56; doi: 10.1007/s40279- 020-01322-8.
3.
McArdle WD, Katch FI, Katch VL. Exercise Physiology. Nutrition, Energy, and Human Performance. 9th ed. Lippincott Williams and Wilkins; 2022.
4.
Bouchard C, An P, Rice T, Skinner JS, Wilmore JH, Gagnon J, Pérusse L, Leon AS, Rao DC. Familial aggregation of VO2max responses to exercise training: results from the HERITAGE family study. J Appl Physiol. 1999;87(3):1003–8; doi: 10.1152/ jappl.1999.87.3.1003.
5.
Iannetta D, Inglis EC, Mattu AT, Fontana FY, Silvia P, Keir DA, Murias JM. A critical evaluation of current methods for exercise prescription in women and men. Med Sci Sport Exerc. 2020;52(2): 466–73; doi: 10.1249/MSS.0000000000002147.
6.
Inglis EC, Iannetta D, Rasica L, Mackie MZ, Keir DA, Macinnis MJ, Murias JM. Heavy-, severe-, and extreme-, but not moderate-intensity exercise increase VO2max and thresholds after 6 wk of training. Med Sci Sports Exerc. 2024;56(7):1307–16; doi: 10.1249/MSS.0000000000003406.
7.
Pollock ML, Gaesser GA, Butcher JD, Despres J-P, Dishman RK, Franklin BA, Garber CE. American College of Sports Medicine Position Stand. The recommended quantity and quality of exercise for developing and maintaining cardiorespiratory and muscular fitness, and flexibility in healthy adults. Med Sci Sport Exerc. 1998;30(6):975–91; doi: 10.1097/00005768-199806000-00032.
8.
Bok D, Rakovac M, Foster C. An examination and critique of subjective methods to determine exercise intensity: the talk test, feeling scale, and rating of perceived exertion. Sport Med. 2022;52(9): 2085–109; doi: 10.1007/s40279-022-01690-3.
9.
Hawley JA, Hargreaves M, Joyner MJ, Zierath JR. Integrative biology of exercise. Cell. 2014;159(4): 738–49; doi: 10.1016/j.cell.2014.10.029.
10.
Maturana FM, Schellhorn P, Erz G, Burgstahler C, Widmann M, Munz B, Soares RN, Murias JM, Thiel A, Nieß AM. Individual cardiovascular responsiveness to work-matched exercise within the moderate- and severe-intensity domains. Eur J Appl Physiol. 2021;121(7):2039–59; doi: 10.1007/ s00421-021-04676-7.
11.
Meyler S, Bottoms L, Wellsted D, Muniz-Pumares D. Variability in exercise tolerance and physiological responses to exercise prescribed relative to physiological thresholds and to maximum oxygen uptake. Exp Physiol. 2023;108(4):581–94; doi: 10.1113/EP090878.
12.
Foster C, Casado A, Esteve-Lanao J, Haugen T, Seiler S. Polarised training is optimal for endurance athletes. Med Sci Sports Exerc. 2022;54(6):1028– 31; doi: 10.1249/MSS.0000000000002871.
13.
Burnley M, Bearden SE, Jones AM. Polarised training is not optimal for endurance athletes. Med Sci Sports Exerc. 2022;54(6):1032–4; doi: 10.1249/ MSS.0000000000002869.
14.
Casado A, Hanley B, Santos-Concejero J, Ruiz- Pérez LM. World-class long-distance running performances are best predicted by volume of easy runs and deliberate practice of short-interval and tempo runs. J Strength Cond Res. 2021;35(9): 2525–31; doi: 10.1519/JSC.0000000000003176.
15.
Filipas L, Bonato M, Gallo G, Codella R. Effects of 16 weeks of pyramidal and polarised training intensity distributions in well-trained endurance runners. Scand J Med Sci Sports. 2022;32(3):498– 511; doi: 10.1111/sms.14101.
16.
Haugen T, Sandbakk Ø, Seiler S, Tønnessen E. The training characteristics of world-class distance runners: an integration of scientific literature and results-proven practice. Sport Med Open. 2022;8: 46; doi: 10.1186/s40798-022-00438-7.
17.
Seiler S. What is best practice for training intensity and duration distribution in endurance athletes?. Int J Sports Physiol Perform. 2010;5(3): 276–91; doi: 10.1123/ijspp.5.3.276.
18.
Arney BE, Glover R, Fusco A, Cortis C, de Koning JJ, van Erp T, Jaime S, Mikat RP, Porcari JP, Foster C. Comparison of RPE (rating of perceived exertion) scales for session RPE. Int J Sports Physiol Perform. 2019;14(7):994–6; doi: 10.1123/ijspp. 2018-0637.
19.
Parfitt G, Evans H, Eston R. Perceptually regulated training at RPE13 is pleasant and improves physical health. Med Sci Sport Exerc. 2012;44(8): 1613–8; doi: 10.1249/MSS.0b013e31824d266e.
20.
Losnegard T, Skarli S, Hansen J, Roterud S, Svendsen IS, R. Rønnestad BR, Paulsen G. Is rating of perceived exertion a valuable tool for monitoring exercise intensity during steady-state conditions in elite endurance athletes?. Int J Sports Physiol Perform. 2021;16(11):1589–95; doi: 10.1123/ijspp. 2020-0866.
21.
Foster C, Boullosa D, McGuigan M, Fusco A, Cortis C, Arney BE, Orton B, Dodge C, Jaime S, Radtke K, van Erp T, de Koning JJ, Bok D, Rodriguez- Marroyo JA, Porcari JP. 25 years of session rating of perceived exertion: historical perspective and development. Int J Sports Physiol Perform. 2021; 16(5):612–21; doi: 10.1123/ijspp.2020-0599.
22.
Cannon C, Foster C, Porcari JP, Skemp-Arlt KM, Fater DC, Backes R. The Talk Test as a measure of exertional ischemia. Am J Med Sport. 2004;6: 52–7.
23.
Foster C, Porcari JP, Gibson M, Wright G, Greany J, Talati N, Recalde P. Translation of submaximal exercise test responses to exercise prescription using the Talk Test. J Strength Cond Res. 2009;23(9):2425–9; doi: 10.1519/JSC.0b013e31 81c02bce.
24.
Quinn TJ, Coons BA. The Talk Test and its relationship with the ventilatory and lactate thresholds. J Sports Sci. 2011;29(11):1175–82; doi: 10.1080/02640414.2011.585165.
25.
Rodríguez-Marroyo JA, Villa JG, García-López J, Foster C. Relationship between the Talk Test and ventilatory thresholds in well-trained cyclists. J Strength Cond Res. 2013;27(7):1942–9; doi: 10.1519/ JSC.0b013e3182736af3.
26.
Nielsen SG, Buus L, Hage T, Olsen H, Walsøe M, Vinther A. The graded cycling test combined with the talk test is reliable for patients with ischemic heart disease. J Cardiopulm Rehabil Prev. 2014; 34(4):276–80; doi: 10.1097/HCR.00000000000 00067.
27.
Woltmann ML, Foster C, Porcari JP, Camic CL, Dodge C, Haible S, Mikat RP. Evidence that the Talk Test can be used to regulate exercise intensity. J Strength Cond Res. 2015;29(5):1248–54; doi: 10.1519/JSC.0000000000000811.
28.
Schroeder MM, Foster C, Porcari JP, Mikat RP. Effects of speech passage length on accuracy of predicting metabolic thresholds using the talk test. Kinesiology. 2017;49(1):9–14; doi: 10.26582/k.49. 1.14.
29.
Foster C, Porcari J, de Koning JJ, Bannwarth E, Casolino E, Condello G, Galamback K, Gibson M, Lueck J, Rodriguez-Marroyo JA, Walraven L. Exercise training for performance and health. Dtsch Z Sportmed. 2012;63(3):69–74; doi: 10.5960/dzsm. 2011.066.
30.
Foster C, Porcari JP, Ault S, Doro K, Dubiel J, Engen M, Kolman D, Xiong S. Exercise prescription when there is no exercise test: the talk test. Kinesiology. 2018;50(1):33–48.
31.
Gillespie BD, McCormick JJ, Mermier CM, Gibson AL. Talk Test as a practical method to estimate exercise intensity in highly trained competitive male cyclists. J Strength Cond Res. 2015;29(4): 894–8; doi: 10.1519/JSC.0000000000000711.
32.
Goode RC, Mertens R, Shaiman S, Mertens J. Voice, breathing, and the control of exercise intensity. Adv Exp Med Biol. 1998:450:223–9; doi: 10.1007/978-1-4757-9077-1_36.
33.
Jeans EA, Foster C, Porcari JP, Gibson M, Doberstein S. Translation of exercise testing to exercise prescription using the talk test. J Strength Cond Res 2011;25(3):590–6; doi: 10.1519/JSC.0b013e 318207ed53.
34.
Loose BD, Christiansen AM, Smolczyk JE, Roberts KL, Budziszewska A, Hollatz CG, Norman JF. Consistency of the counting talk test for exercise prescription. J Strength Cond Res 2012;26(6): 1701–7; doi: 10.1519/JSC.0b013e318234e84c.
35.
Lyon E, Menke M, Foster C, Porcari JP, Gibson M, Bubbers T. Translation of incremental Talk Test responses to steady-state exercise training intensity. J Cardiopulm Rehabil Prev. 2014;34(4):271– 5; doi: 10.1097/HCR.0000000000000069.
36.
Orizola-Cáceres I, Cerda-Kohler H, Burgos-Jara C, Meneses-Valdes R, Gutierrez-Pino R, Sepúlveda C. Modified Talk Test: a randomised crossover trial investigating the comparative utility of two “Talk Tests” for determining aerobic training zones in overweight and obese patients. Sport Med Open. 2021;7:23; doi: 10.1186/s40798-021-00315-9.
37.
Petersen AK, Maribo T, Hjortdal VE, Laustsen S. Intertester reliability of the talk test in a cardiac rehabilitation population. J Cardiopulm Rehabil Prev. 2014;34(1):49–53; doi: 10.1097/HCR.0000 000000000029.
38.
Creemers N, Foster C, Porcari JP, Cress ML, de Koning JJ. The physiological mechanism behind the talk test. Kinesiology. 2017;49(1):3–8; doi: 10.26582/k.49.1.15.
39.
Foster C, Lemberger K, Thompson NN, Sennett SM, Hare J, Pollock ML, Pels AE 3rd, Schmidt DH. Functional translation of exercise responses from graded exercise testing to exercise training. Am Heart J. 1986;112(6):1309–16; doi: 10.1016/0002- 8703(86)90365-0.
40.
Tyrrell T, Pavlock J, Bramwell S, Cortis C, Doberstein ST, Fusco A, Porcari JP, Foster C. Functional translation of exercise responses from exercise testing to exercise training: the test of a model. J Funct Morphol Kinesiol. 2021;6(3):66; doi: 10.3390/jfmk6030066.
41.
Meyer K, Samek L, Pinchas A, Baier M, Betz P, Roskamm H. Relationship between ventilatory threshold and onset of ischaemia in ECG during stress testing. Eur Heart J. 1995;16(5):623–30; doi: 10.1093/oxfordjournals.eurheartj.a060965.
42.
Jones AM, Grassi B, Christensen PM, Krustrup P, Bangsbo J, Poole DC. Slow component of VO2 kinetics: mechanistic bases and practical applications. Med Sci Sports Exerc. 2011;43(11):2046– 62; doi: 10.1249/MSS.0b013e31821fcfc1.
43.
Poole DC, Barstow TJ, Mcdonough P, Jones AM. Control of oxygen uptake during exercise. Med Sci Sports Exerc. 2008;40(3):462–74; doi: 10.1249/ MSS.0b013e31815ef29b.
44.
Whipp BJ, Wasserman K. Oxygen uptake kinetics for various intensities of constant-load work. J Appl Physiol. 1972;33(3):351–6; doi: 10.1152/ jappl.1972.33.3.351.
45.
Foster C, Barroso R, Bok D, Boullosa D, Casado Alda A, Cortis C, Fusco A, Hanley B, Skiba P, de Koning JJ. “Falling behind,” “letting go,” and being “outsprinted” as distinct features of pacing in distance running. Int J Sports Physiol Perform. 2024;19(9):867–73; doi: 10.1123/ijspp.2023-0308.
46.
Casado A, Foster C, Bakken M, Tjelta LI. Does lactate-guided threshold interval training within a high-volume low-intensity approach represent the “next step” in the evolution of distance running training?. Int J Environ Res Public Health. 2023; 20(5):3782; doi: 10.3390/ijerph20053782.