REVIEW PAPER
Use of multimedia therapeutic tools in the post-stroke rehabilitation proces
 
More details
Hide details
1
University Center for Physiotherapy and Rehabilitation, Wroclaw Medical University, Wroclaw, Poland
 
 
Submission date: 2025-06-17
 
 
Acceptance date: 2025-07-16
 
 
Online publication date: 2025-08-07
 
 
Corresponding author
Bartosz Jan Barzak   

University Center for Physiotherapy and Rehabilitation, Wroclaw Medical University, 3 t. Chałubińskiego st., 50-368, Wroclaw, Poland
 
 
 
KEYWORDS
TOPICS
ABSTRACT
Stroke remains one of the leading causes of disability and death worldwide, resulting in significant social and economic costs. Effective post-stroke rehabilitation, including physiotherapy, occupational therapy, speech therapy and psychological support, is crucial for improving motor and cognitive functions and quality of life in patients. In recent decades, there has been dynamic development of multimedia therapeutic tools, such as virtual reality (VR), robotics, mobile applications and telemedicine. These technologies allow for the personalisation of exercises, greater patient engagement and monitoring of therapy progress. The introduction of VR systems, computer games and motion controllers has revolutionised motor and cognitive rehabilitation, and the use of gamification elements increases motivation and the number of repetitions of exercises performed. A review of studies confirms the effectiveness of VR and other multimedia tools in improving upper limb function, gait, balance and cognitive function and reducing the symptoms of depression after a stroke, as well as strengthening motivation for rehabilitation. Modern technologies also facilitate performing exercises at home, which is particularly important for maintaining long-term therapeutic activity. Multimedia tools are a valuable complement to traditional methods, contributing to the intensity, effectiveness and attractiveness of the post-stroke rehabilitation process.
REFERENCES (61)
1.
Bonkhoff AK, Schirmer MD, Bretzner M, Hong S, Regenhardt RW, Brudfors M, Donahue KL, Nardin MJ, Dalca AV, Giese A-K, Etherton MR, Hancock BL, Mocking SJT, McIntosh EC, Attia J, Benavente OR, Bevan S, Cole JW, Donatti A, Griessenauer CJ, Heitsch L, Holmegaard L, Jood K, Jimenez-Conde J, Kittner SJ, Lemmens R, Levi CR, McDonough CW, Meschia JF, Phuah C-L, Rolfs A, Ropele S, Rosand J, Roquer J, Rundek T, Sacco RL, Schmidt R, Sharma P, Slowik A, Söderholm M, Sousa A, Stanne TM, Strbian D, Tatlisumak T, Thijs V, Vagal A, Wasselius J, Woo D, Zand R, McArdle PF, Worrall BB , Jern C, Lindgren AG, Maguire J, Bzdok D, Wu O; MRI-GENIE and GISCOME Investigators and the International Stroke Genetics Consortium; Rost NS. Outcome after acute ischemic stroke is linked to sex-specific lesion patterns. Nat Commun. 2021;12(1):3289; doi:10.1038/s41467-021-23492-3.
 
2.
D’Netto P, Rumbach A, Dunn K, Finch E. Clinical predictors of dysphagia recovery after stroke: a systematic review. Dysphagia. 2023;38(1):1–22; doi: 10.1007/s00455-022-10443-3.
 
3.
Bangad A, Abbasi M, de Havenon A. Secondary ischemic stroke prevention. Neurotherapeutics. 2023;20(3):721–31; doi: 10.1007/s13311-023-01 352-w.
 
4.
Kwakkel G, Stinear C, Essers B, Munoz-Novoa M, Branscheidt M, Cabanas-Valdés R, Lakičević S, Lampropoulou S, Luft AR, Marque P, Moore SA, Solomon JM, Swinnen E, Turolla A, Murphy MA, Verheyden G.. Motor rehabilitation after stroke: European Stroke Organisation (ESO ) consensusbased definition and guiding framework. Eur Stroke J. 2023;8(4):880–94; doi: 10.1177/23969 873231191304.
 
5.
Mu J, Ravindran AV, Cuijpers P, Shen Y, Yang W, Li Q, Zhou X, Xie P Stroke depression: a concept with clinical applicability. Stroke Vasc Neurol. 2024;9(3):189–93; doi: 10.1136/svn-2022-002146.
 
6.
Shehjar F, Maktabi B, Rahman ZA, Bahader GA, James AW, Naqvi A, Mahajan R, Shah ZA. Stroke: molecular mechanisms and therapies: update on recent developments. Neurochem Int. 2023;162: 105458; doi: 10.1016/j.neuint.2022.105458.
 
7.
De Assis GG, Murawska-Ciałowicz E. Brain-derived neurotrophic factor and stroke: perspectives on exercise as a health care strategy. Hum Mov. 2024;25(1):1–14; doi: 10.5114/hm.2024.136050.
 
8.
Kim J, Olaiya MT, De Silva DA, Norrving B, Bosch J, De Sousa DA, Christensen HK, Ranta A, Donnan GA, Feigin V, Martins S, Schwamm LH, Werring DJ, Howard G, Owolabi M, Pandian J, Mikulik R, Thayabaranathan T, Cadilhac DA. Global stroke statistics 2023: Availability of reperfusion services around the world. Int J Stroke. 2024;19(3): 253–70; doi: 10.1177/17474930231210448.
 
9.
Lee EC, Ha TW, Lee DH, Hong DY, Park SW, Lee JY, Lee MR, Oh JS. Utility of exosomes in ischemic and hemorrhagic stroke diagnosis and treatment. Int J Mol Sci. 2022;23(15):8367; doi: 10.3390/ijms23158367.
 
10.
Tadi P, Lui F. Acute stroke. [Updated 2023 Aug 17]. In: StatPearls [Internet]. Treasure Island: Stat- Pearls Publishing; 2025. Available from: https:// www.ncbi.nlm.nih.gov/books/NBK535369/.
 
11.
Zhu H, Hu S, Li Y, Sun Y, Xiong X, Hu X, Chen J, Qiu S. Interleukins and ischemic stroke. Front Immunol. 2022;13:828447; doi: 10.3389/fimmu. 2022.828447.
 
12.
Feske SK. Ischemic stroke. Am J Med. 2021;134 (12):1457–64; doi: 10.1016/j.amjmed.2021.07.027.
 
13.
Paul S, Candelario-Jalil E. Emerging neuroprotective strategies for the treatment of ischemic stroke: an overview of clinical and preclinical studies. Exp Neurol. 2021;335:113518; doi: 10.10 16/j.expneurol.2020.113518.
 
14.
Barthels D, Das H. Current advances in ischemic stroke research and therapies. Biochim Biophys Acta Mol Basis Dis. 2020;1866(4):165260; doi: 10.1016/j.bbadis.2018.09.012.
 
15.
Montaño A, Hanley DF, Hemphill JC 3rd. Hemorrhagic stroke. Handb Clin Neurol. 2021;176:229– 48; doi: 10.1016/B978-0-444-64034-5.00019-5.
 
16.
Mazur R, Świerkocka-Miastkowska M. Stroke in Medical Practice [in Polish]. Via Medica; 2004, pp. 27–36.
 
17.
Pound P, Bury M, Ebrahim S. From apoplexy to stroke. Age Ageing. 1997;26(5):331–7; doi: 10.1093/ ageing/26.5.331.
 
18.
Coupland AP, Thapar A, Qureshi MI, Jenkins H, Davies AH. The definition of stroke. J R Soc Med. 2017;110(1):9–12; doi: 10.1177/0141076816680121.
 
19.
Schutta HS, Howe HM. Seventeenth century concepts of “apoplexy” as reflected in Bonet’s “Sepulchretum”. J Hist Neurosci. 2006;15(3):250–68; doi: 10.1080/09647040500403312.
 
20.
Schutta HS. Morgagni on apoplexy in De Sedibus: a historical perspective. J Hist Neurosci. 2009; 18(1):1–24; doi: 10.1080/09647040701578219.
 
21.
Huang J, Ji J-R, Liang C, Zhang Y-Z, Sun H-C, Yan Y-H, Xing X-B. Effects of physical therapybased rehabilitation on recovery of upper limb motor function after stroke in adults: a systematic review and meta-analysis of randomized controlled trials. Ann Palliat Med. 2022;11(2):521–31; doi: 10.21037/apm-21-3710.
 
22.
Caires TA, Luvizutto GJ, Vieira PCS, Jablonski G, Bazan R, Andrade AO, Souza LAPS. A single training session of visual choice reaction time after mild stroke: a proof of concept. Hum Mov. 2022;23(2): 21–7; doi: 10.5114/hm.2021.106168.
 
23.
Clark B, Whitall J, Kwakkel G, Mehrholz J, Ewings S, Burridge J. The effect of time spent in rehabilitation on activity limitation and impairment after stroke. Cochrane Database Syst Rev. 2021; 10(10):CD012612; doi: 10.1002/14651858.CD01 2612.pub2.
 
24.
Coleman ER, Moudgal R, Lang K, Hyacinth HI, Awosika OO , Kissela BM, Feng W. Early rehabilitation after stroke: a narrative review. Curr Atheroscler Rep. 2017;19(12):59; doi: 10.1007/s118 83-017-0686-6.
 
25.
Penna LG, Pinheiro JP, Ramalho SHR, Ribeiro CF. Effects of aerobic physical exercise on neuroplasticity after stroke: systematic review. Arq Neuropsiquiatr. 2021;79(9):832–43; doi: 10.1590/ 0004-282X-ANP-2020-0551.
 
26.
Legg LA, Lewis SR, Schofield-Robinson OJ, Drummond A, Langhorne P. Occupational therapy for adults with problems in activities of daily living after stroke. Cochrane Database Syst Rev. 2017;7(7): CD003585; doi: 10.1002/14651858.CD003585. pub3.
 
27.
Chiaramonte R, Pavone P, Vecchio M. Speech rehabilitation in dysarthria after stroke: a systematic review of the studies. Eur J Phys Rehabil Med. 2020;56(5):547–62; doi: 10.23736/S1973- 9087.20.06185-7.
 
28.
Ahmad A A, Suriyaamarit D, Siriphorn A. Combining textured insoles and compelled body weight shift improves lower limb function and gait in individuals with stroke: a randomised controlled trial. Hum Mov. 2025;26(2):61–72; doi: 10.5114/ hm/202457.
 
29.
Minelli C, Bazan R, Pedatella MTA, Neves LO, Cacho RO, Magalhães SCSA, Luvizutto GJ, Moro CHC, Lange MC, Modolo GP, Lopes BC, Pinheiro EL, de Souza JT, Rodrigues GR, Fabio SRC, do Prado GF, Carlos K, Teixeira JJM, Barreira CMA, Castro RS, Quinan TD L, Damasceno E, Almeida KJ, Pontes-Neto OM, Dalio MTRP, Camilo MR, Tosin MHS, Oliveira BC, de Oliveira BGRB, de Carvalho JJF, Martins SCO. Brazilian Academy of Neurology practice guidelines for stroke rehabilitation: part I. Arq Neuropsiquiatr. 2022;80(6): 634–52; doi: 10.1590/0004-282X-ANP-2021-0354.
 
30.
Smadja D, Krolak-Salmon P. Specificities of acute phase stroke management in the elderly. Rev Neurol. 2020;176(9):684–91; doi: 10.1016/j.neurol. 2020.07.006.
 
31.
Wasiuk-Zowada D. Physiotherapy for stroke patients. In: Brzęk A, Krzystanek E, Siuda J (eds.). Physiotherapy and Treatment in Selected Diseases of the Central Nervous System. Theoretical Considerations and Practical Recommendations. A Textbook for Medical Students, Including Physiotherapy and Medicine [in Polish]. Medical University of Silesia in Katowice: Katowice; 2022, pp. 83–94.
 
32.
Vive S, Bunketorp-Käll L, Carlsson G. Experience of enriched rehabilitation in the chronic phase of stroke. Disabil Rehabil. 2022;44(3):412–19; doi: 10.1080/09638288.2020.1768598.
 
33.
Ferrarello F, Baccini M, Rinaldi LA, Cavallini MC, Mossello E, Masotti G, Marchionni N, Di Bari M. Efficacy of physiotherapy interventions late after stroke: a meta-analysis. J Neurol Neurosurg Psychiatry. 2011;82(2):136–43; doi: 10.1136/jnnp. 2009.196428.
 
34.
Wong MN-K, Cheung MK-N, Ng Y-M, Yuan H-L, Lam BY-H, Fu SN, Chan CCH. International Classification of Functioning, Disability, and Healthbased rehabilitation program promotes activity and participation of post-stroke patients. Front Neurol. 2023;3;14:1235500; doi: 10.3389/fneur. 2023.1235500.
 
35.
Neil HP. Stroke rehabilitation. Crit Care Nurs Clin North Am. 2023;35(1):95–9; doi: 10.1016/j.cnc. 2022.11.002.
 
36.
Piskorz J, Wójcik G, Iłzecka J, Kozakputowska D. Early rehabilitation of patients after ischaemic stroke. Med Og Nauk Zdr. 2014;20(4):351–5; doi: 10.5604/20834543.1132034.
 
37.
Kwakkel G, Veerbeek JM, van Wegen EE, Wolf SL. Constraint-induced movement therapy after stroke. Lancet Neurol. 2015;14(2):224–34; doi: 10.1016/ S1474-4422(14)70160-7.
 
38.
Studnicki R, Hansdorfer-Korzon R, Sławek J. The use of physical therapy in the treatment of spasticity in patients after stroke [in Polish] Rehabil Prakt. 2015;4:47–52.
 
39.
Demeco A, Zola L, Frizziero A, Martini C, Palumbo A, Foresti R, Buccino G, Costantino C. Immersive virtual reality in post-stroke rehabilitation: a systematic review. Sensors. 2023;23(3):1712; doi: 10.3390/s23031712.
 
40.
Reinkensmeyer DJ, Emken JL, Cramer SC. Robotics, motor learning, and neurologic recovery. Annu Rev Biomed Eng. 2004;6:497–525; doi: 10.1146/annurev.bioeng.6.040803.140223.
 
41.
Kiper P, Szczudlik A, Mirek E, Nowobilski R, Opara J, Agostini M, Tonin P, Turolla A. The application of virtual reality in neuro-rehabilitation: motor re-learning supported by innovative technologies. Med Rehabil. 2013;17(4):29–36.
 
42.
Laver KE, Lange B, George S, Deutsch JE, Saposnik G, Crotty M. Virtual reality for stroke rehabilitation. Cochrane Database Syst Rev. 2017; 11(11):CD008349; doi: 10.1002/14651858.CD00 8349.pub4.
 
43.
Saposnik G, Levin M; Outcome Research Canada (SO RCan) Working Group. Virtual reality in stroke rehabilitation: a meta-analysis and implications for clinicians. Stroke. 2011;42(5):1380–6; doi: 10.1161/ST ROKEAHA.110.605451.
 
44.
Winstein CJ, Stein J, Arena R, Bates B, Cherney LR, Cramer SC, et al. Guidelines for adult stroke rehabilitation and recovery: a guideline for healthcare professionals from the American Heart Association/ American Stroke Association. Stroke. 2016;47(6):e98–169; doi: 10.1161/ST R.0000000 000000098. Erratum in: Stroke. 2017;48(2):e78; doi: 10.1161/ST R.0000000000000120. Erratum in: Stroke. 2017;48(12):e369; doi: 10.1161/ST R. 0000000000000156.
 
45.
Chuang H-J, Lin C-W, Hsiao M-Y, Wang T-G, Liang H-W. Long COVID and rehabilitation. J Formos Med Assoc. 2024;123(Suppl 1):61–9; doi: 10.1016/j.jfma.2023.03.022.
 
46.
Pittara M, Matsangidou M, Pattichis CS. Virtual reality for pulmonary rehabilitation: comprehensive review. JMIR Rehabil Assist Technol. 2023;10:e47114; doi: 10.2196/47114.
 
47.
Parisi A, Bellinzona F, Di Lernia D, Repetto C, De Gaspari S, Brizzi G, Riva G, Tuena C. Efficacy of multisensory technology in post-stroke cognitive rehabilitation: a systematic review. J Clin Med. 2022;11(21):6324; doi: 10.3390/jcm11216324.
 
48.
Fell N, True HH, Allen B, Harris A, Cho J, Hu Z, Sartipi M, Place KK, Salstrand R. Functional measurement post-stroke via mobile application and body-worn sensor technology. Mhealth. 2019;5: 47; doi: 10.21037/mhealth.2019.08.11.
 
49.
Pugliese M, Ramsay T, Shamloul R, Mallet K, Zakutney L, Corbett D, Dukelow S, Stotts G, Shamy M, Wilson K, Guerinet J, Dowlatshahi D. RecoverNow: a mobile tablet-based therapy platform for early stroke rehabilitation. PLOS ONE. 2019; 14(1):e0210725; doi: 10.1371/journal.pone.0210 725.
 
50.
Han K, Liu G, Liu N, Li J, Li J, Cui L, Cheng M, Long J, Liao X, Tang Z, Liu Y, Liu J, Chen J, Lu H, Zhang H.. Effects of mobile intelligent cognitive training for patients with post-stroke cognitive impairment: a 12-week, multicenter, randomized controlled study. J Alzheimers Dis. 2024;100(3): 999–1015; doi: 10.3233/JAD-240356.
 
51.
Kiper P, Przysiężna E, Cieślik B, Broniec-Siekaniec K, Kucińska A, Szczygieł J, Turek K, Gajda R, Szczepańska-Gieracha J. Effects of immersive virtual therapy as a method supporting recovery of depressive symptoms in post-stroke rehabilitation: randomized controlled trial. Clin Interv Aging. 2022;17:1673–85; doi: 10.2147/CIA.S375754.
 
52.
Khokale R, S Mathew G, Ahmed S, Maheen S, Fawad M, Bandaru P, Zerin A, Nazir Z, Khawaja I, Sharif I, Abdin ZU, Akbar A.. Virtual and augmented reality in post-stroke rehabilitation: a narrative review. Cureus. 2023;15(4):e37559; doi: 10.7759/cureus.37559.
 
53.
Dąbrowská M, Pastucha D, Janura M, Tomášková H, Honzíková L, Baníková Š, Filip M, Fiedorová I. Effect of virtual reality therapy on quality of life and self-sufficiency in post-stroke patients. Medicina. 2023;59(9):1669; doi: 10.3390/medicina59091669.
 
54.
Ase H, Honaga K, Tani M, Takakura T, Wada F, Murakami Y, Isayama R, Tanuma A, Fujiwara T. Effects of home-based virtual reality upper extremity rehabilitation in persons with chronic stroke: a randomized controlled trial. J Neuroeng Rehabil. 2025;22(1):20; doi: 10.1186/s12984-025- 01564-5.
 
55.
Jo S, Jang H, Kim H, Song C. 360° immersive virtual reality-based mirror therapy for upper extremity function and satisfaction among stroke patients: a randomized controlled trial. Eur J Phys Rehabil Med. 2024;60(2):207–15; doi: 10.23736/ S1973-9087.24.08275-3.
 
56.
Sana V, Ghous M, Kashif M, Albalwi A, Muneer R, Zia M. Effects of vestibular rehabilitation therapy versus virtual reality on balance, dizziness, and gait in patients with subacute stroke: a randomized controlled trial. Medicine. 2023;102(24):e33203; doi: 10.1097/MD.0000000000033203.
 
57.
Kayabinar B, Alemdaroğlu-Gürbüz İ, Yilmaz Ö. The effects of virtual reality augmented robot-assisted gait training on dual-task performance and functional measures in chronic stroke: a randomized controlled single-blind trial. Eur J Phys Rehabil Med. 2021;57(2):227–37; doi: 10.23736/ S1973-9087.21.06441-8.
 
58.
Faria AL, Pinho MS, Bermúdez I Badia S. A comparison of two personalization and adaptive cognitive rehabilitation approaches: a randomized controlled trial with chronic stroke patients. J Neuroeng Rehabil. 2020;17(1):78; doi: 10.1186/s129 84-020-00691-5.
 
59.
Rogers JM, Duckworth J, Middleton S, Steenbergen B, Wilson PH. Elements virtual rehabilitation improves motor, cognitive, and functional outcomes in adult stroke: evidence from a randomized controlled pilot study. J Neuroeng Rehabil. 2019;16(1):56; doi: 10.1186/s12984-019- 0531-y.
 
60.
Friedman N, Chan V, Reinkensmeyer AN, Beroukhim A, Zambrano GJ, Bachman M, Reinkensmeyer DJ. Retraining and assessing hand movement after stroke using the MusicGlove: comparison with conventional hand therapy and isometric grip training. J Neuroeng Rehabil. 2014;11:76; doi: 10.1186/1743-0003-11-76.
 
61.
Winter C, Kern F, Gall D, Latoschik ME, Pauli P, Käthner I. Immersive virtual reality during gait rehabilitation increases walking speed and motivation: a usability evaluation with healthy participants and patients with multiple sclerosis and stroke. J Neuroeng Rehabil. 2021;18(1):68; doi: 10.1186/s12984-021-00848-w.
 
eISSN:1899-1955
Journals System - logo
Scroll to top