REVIEW PAPER
Functional impairment of knee muscles after walking with backpack load: a systematic review
 
More details
Hide details
1
Brazilian Army Research Institute of Physical Fitness, Research Division – Biomechanics Laboratory, Rio de Janeiro, Brazil
 
2
University of Trás-os-Montes and Alto Douro, Doctoral Program in Sport Sciences – Vila Real, Portugal
 
3
Physical Education College of the Brazilian Army, Teaching Division – Physical Education Course, Rio de Janeiro, Brazil
 
4
Research Center in Sport Sciences. Health Sciences and Health, Vila Real, Portugal
 
 
Submission date: 2023-10-06
 
 
Acceptance date: 2024-04-02
 
 
Publication date: 2024-06-28
 
 
Corresponding author
Fabio Alves Machado   

Brazilian Army Research Institute of Physical Fitness
 
 
Hum Mov. 2024;25(2):36-52
 
KEYWORDS
TOPICS
ABSTRACT
To review the available literature on the acute and temporal effects of backpack load carriage on knee muscle force production post-walking. Data sources: The databases were PubMed, Lens, ScienceDirect, Scopus, BVS, and EBSCO. Study selection: The eligibility criteria were: sample aged between 18 and 45 years old, backpack load carriage walking, knee flexor and/ or extensor muscle strength measurement comparing post-walking with pre-walking or with no-load walking; articles that reported at least one acute response, and/or temporal response; randomised controlled trials and prospective cohort studies that have a longitudinal design that compared two or more groups, or one group with a test and re-test output described and written in English. This systematic review was conducted in accordance with the PRISMA 2020 Statement. We used the Joanna Briggs Institute Critical review tool for randomised controlled trials and prospective cohorts to assess the methodological quality of the studies. A total of 1004 records were screened, and five studies were included in the review. Data extraction: Participant details, study design, load carriage system, load carriage conditions, walking conditions, and method and instrument used to measure strength. Conclusions: The acute and temporal neuromuscular impairments are load-dependent and are independent of the intervention performed. Acute impairments seem to occur due to a decreased ability to modulate motor output rapidly and accurately, and temporal impairment by eccentric motor activity increased by the external load. Carbohydrate or whey protein accelerates the recovery of neuromuscular function after prolonged load carriage occurs in isometric strength, but not in isokinetic strength.
 
REFERENCES (79)
1.
Liew B, Morris S, Netto K. The effect of backpack carriage on the biomechanics of walking: a systematic review and preliminary meta-analysis. J Appl Biomech. 2016;32(6):614–29; doi: 10.1123/ jab.2015-0339.
 
2.
Santos TRT, Fonseca ST, Araújo VL, Lee S, Saucedo F, Allen S, Siviy C, Souza TR, Walsh C, Holt KG. Load carriage during walking increases dynamic stiffness at distal lower limb joints. J Appl Biomech. 2021;37(4):373–79; doi: 10.1123/jab.2020-0346.
 
3.
Barbieri FA, Beretta SS, Pereira VAI, Simieli L, Orcioli-Silva D, dos Santos PCR, van Dieën JH, Gobbi LTB. Recovery of gait after quadriceps muscle fatigue. Gait Posture. 2016;43:270–74; doi: 10.1016/j.gaitpost.2015.10.015.
 
4.
Seay JF. Biomechanics of load carriage – historical perspectives and recent insights. J Strength Cond Res. 2015;29:129–33; doi: 10.1519/JSC. 0000000000001031.
 
5.
Quesada PM, Mengelkoch LJ, Hale RC, Simon SR. Biomechanical and metabolic effects of varying backpack loading on simulated marching. Ergonomics. 2000;43(3):293–309; doi: 10.1080/001 401300184413.
 
6.
Earl-Boehm JE, Poel DN, Zalewski K, Ebersole KT. The effects of military style ruck marching on lower extremity loading and muscular, physiological and perceived exertion in ROTC cadets. Ergonomics. 2020;63(5):629–38; doi: 10.1080/ 00140139.2020.1745900.
 
7.
Dever DE, Krajewski KT, Johnson CC, Allison KF, Ahamed NU, Lovalekar M, Mi Q, Flanagan SD, Anderst WJ, Connaboy C. Increases in load carriage magnitude and forced marching change lowerextremity coordination in physically active, recruitaged women. J Appl Biomech. 2021;37(4):343–50; doi: 10.1123/jab.2020-0340.
 
8.
Andersen KA, Grimshaw PN, Kelso RM, Bentley DJ. Musculoskeletal lower limb injury risk in army populations. Sports Med Open. 2016;2: 22; doi: 10.1186/s40798-016-0046-z.
 
9.
Verbitsky O, Mizrahi J, Voloshin A, Treiger J, Isakov E. Shock transmission and fatigue in human running. J Appl Biomech. 1998;14(3):300–11; doi: 10.1123/jab.14.3.300.
 
10.
Voloshin A. The influence of walking speed on dynamic loading on the human musculoskeletal system. Med Sci Sports Exerc. 2000;32(6):1156– 1159; doi: 10.1097/00005768-200006000-00019.
 
11.
James S, Damian C, Mathew B. Energy cost and knee extensor strength changes following multiple day military load carriage. Appl Ergon. 2021; 97:103503; doi: 10.1016/j.apergo.2021.103503.
 
12.
Wang H, Frame J, Ozimek E, Leib D, Dugan EL. Influence of fatigue and load carriage on mechanical loading during walking. Mil Med. 2012;177(2): 152–56; doi: 10.7205/milmed-d-11-00210.
 
13.
Krupenevich R, Rider P, Domire Z, Devita P. Males and females respond similarly to walking with a standardized, heavy load. Mil Med. 2015; 180(9):994–1000; doi: 10.7205/MILMED-D-14- 00499.
 
14.
Fitts RH. Cellular mechanisms of muscle fatigue. Physiol Rev. 1994;74(1):49–94; doi: 10.1152/ physrev.1994.74.1.49.
 
15.
Constantin-Teodosiu D, Constantin D. Molecular mechanisms of muscle fatigue. Int J Mol Sci. 2021;22(21):11587; doi: 10.3390/ijms222111587.
 
16.
Danek J, Wojtasik W, Szulc A. Measurement of maximal isometric torque and muscle fatigue index of the knee muscles in male athletes. Acta Bioeng Biomech. 2019;21(3):31–7.
 
17.
González-Izal M, Malanda A, Gorostiaga E, Izquierdo M. Electromyographic models to assess muscle fatigue. J Electromyogr Kinesiol. 2012;22(4): 501–12; doi: 10.1016/j.jelekin.2012.02.019.
 
18.
Hug F, Tucker K, Gennisson JL, Tanter M, Nordez A. Elastography for muscle biomechanics: toward the estimation of individual muscle force. Exerc Sport Sci Rev. 2015;43(3):125–33; doi: 10.1249/JES.0000000000000049.
 
19.
Na Y, Kim SJ, Kim J. Force estimation in fatigue condition using a muscle-twitch model during isometric finger contraction. Med Eng Phys. 2017;50: 103–8; doi: 10.1016/j.medengphy.2017.10.002.
 
20.
Rodrigues SB, de Faria LP, Monteiro AM, Lima JL, Barbosa TM, Duarte JA. EMG signal processing for the study of localized muscle fatigue – pilot study to explore the applicability of a novel method. Int J Environ Res Public Health. 2022;19(20): 13270; doi: 10.3390/ijerph192013270.
 
21.
Vøllestad NK. Measurement of human muscle fatigue. J Neurosci Methods. 1997;74(2):219–27; doi: 10.1016/s0165-0270(97)02251-6.
 
22.
Edwards RH. Human muscle function and fatigue. Ciba Found Symp. 1981;82:1–18; doi: 10.1002/ 9780470715420.ch1.
 
23.
Ferrucci L, Guralnik JM, Buchner D, Kasper J, Lamb SE, Simonsick EM, Corti MC, Bandeen- Roche K, Fried LP. Departures from linearity in the relationship between measures of muscular strength and physical performance of the lower extremities: the women’s health and aging study. J Gerontol A Biol Sci Med Sci. 1997;52(5):275– 85; doi: 10.1093/gerona/52a.5.m275.
 
24.
Hoffman J. Norms for Fitness, Performance, and Health. Champaign: Human Kinetics; 2006.
 
25.
Osawa Y, Studenski SA, Ferrucci L. Knee extension rate of torque development and peak torque: associations with lower extremity function. J Cachexia Sarcopenia Muscle. 2018;9(3):530–39; doi: 10.1002/jcsm.12285.
 
26.
Visser M, Goodpaster BH, Kritchevsky SB, Newman AB, Nevitt M, Rubin SM, Simonsick EM, Harris TB. Muscle mass, muscle strength, and muscle fat infiltration as predictors of incident mobility limitations in well-functioning older persons. J Gerontol A Biol Sci Med Sci. 2005;60(3): 324–33; doi: 10.1093/gerona/60.3.324.
 
27.
Warren GL, Lowe DA, Armstrong RB. Measurement tools used in the study of eccentric contraction- induced injury. Sports Med. 1999;27(1):43– 59; doi: 10.2165/00007256-199927010-00004.
 
28.
Knapik JJ, Harman EA, Steelman RA, Graham BS. A systematic review of the effects of physical training on load carriage performance. J Strength Cond Res. 2012;26(2):585–97; doi: 10.1519/JSC.0b0 13e3182429853.
 
29.
O’Neal EK, Hornsby JH, Kelleran KJ. High-intensity tasks with external load in military applications: a review. Mil Med. 2014;179(9):950–54; doi: 10.7205/MILMED-D-14-00079.
 
30.
Boffey D, Harat I, Gepner Y, Frosti CL, Funk S, Hoffman JR. The Physiology and biomechanics of load carriage performance. Mil Med. 2019; 184(1–2):83–90; doi: 10.1093/milmed/usy218.
 
31.
Potter A, Santee W, Clements CM, Brooks K, Hoyt RW. Comparative analysis of metabolic cost equations: a review. J Sport Hum Perform. 2013; 1(3):34–42; doi: 10.12922/jshp.0009.2013.
 
32.
Barbieri FA, dos Santos PCR, Lirani-Silva E, Vitório R, Gobbi LTB, van Diëen JH. Systematic review of the effects of fatigue on spatiotemporal gait parameters. J Back Musculoskelet Rehabil. 2013;26(2):125–31; doi: 10.3233/BMR-130371.
 
33.
Fox BD, Judge LW, Dickin DC, Wang H. biomechanics of military load carriage and resulting musculoskeletal injury: a review. J Orthop Orthop Surg. 2020;1(1):6–11; doi: 10.29245/2767-5130/ 2020/1.1104.
 
34.
Walsh GS, Low DC. Military load carriage effects on the gait of military personnel: a systematic review. Appl Ergon. 2021;93:103376; doi: 10.1016/ j.apergo.2021.103376.
 
35.
Orr RM, Pope R, Johnston V, Coyle J. Soldier occupational load carriage: a narrative review of associated injuries. Int J Inj Contr Saf Promot. 2014; 21(4):388–96; doi: 10.1080/17457300.2013.83 3944.
 
36.
Pinedo-Jauregi A, Mejuto Hidalgo GM, Bentley DJ, Grimshaw P, Cámara Tobalina J. Protocols used to determine the influence of backpack load on physiological variables. Systematic review. Int J Ind Ergon. 2021;86:103227; doi: 10.1016/j.ergon. 2021.103227.
 
37.
Carlton SD, Orr RM. The impact of occupational load carriage on carrier mobility: a critical review of the literature. Int J Occup Saf Ergon. 2014;20(1): 33–41; doi: 10.1080/10803548.2014.11077025.
 
38.
Drain J, Billing D, Neesham-Smith D, Aisbett B. Predicting physiological capacity of human load carriage – a review. Appl Ergon. 2016;52:85–94; doi: 10.1016/j.apergo.2015.07.003.
 
39.
Joseph A, Wiley A, Orr R, Schram B, Dawes JJ. The impact of load carriage on measures of power and agility in tactical occupations: a critical review. Int J Environ Res Public Health. 2018;15(1):88; doi: 10.3390/ijerph15010088.
 
40.
Orr RM, Dawes JJ, Lockie RG, Godeassi DP. the relationship between lower-body strength and power, and load carriage tasks: a critical review. Int J Exerc Sci. 2019;12(6):1001–122.
 
41.
Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, Moher D. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71; doi: 10.1136/bmj.n71.
 
42.
Aromataris E, Munn Z. Chapter 3: Systematic reviews of effectiveness. In: Tufanaru C, Munn Z, Aromataris E, Campbell J, Hopp L (eds.) JBI Manual for Evidence Synthesis. JBI; 2020; doi: 10.46658/ JBIMES-20-01. Available from: https://jbi-globalwiki. refined.site/space/MANUAL/355599504 (accessed May 11, 2021).
 
43.
Moola S, Munn Z, Tufanaru C, Aromataris E, Sears K, Sfetcu R, Currie M, Lisy K, Qureshi R, Mattis P, Mu P. Systematic reviews of etiology and risk (2020). In: Aromataris E, Lockwood C, Porritt K, Pilla B, Jordan Z (eds) JBI Manual for Evidence Synthesis. JBI; 2024. Available from: https:// synthesismanual.jbi.global; https://doi.org/ 10.46658/JBIMES-24-06 (accessed May 11, 2021).
 
44.
Blacker SD, Williams NC, Fallowfield JL, Bilzon JLJ, Willems ME. Carbohydrate vs protein supplementation for recovery of neuromuscular function following prolonged load carriage. J Int Soc Sports Nutr. 2010;7(1):2; doi: 10.1186/1550- 2783-7-2.
 
45.
Blacker SD, Fallowfield JL, Bilzon JLJ, Willems MET. Neuromuscular function following prolonged load carriage on level and downhill gradients. Aviat Space Environ Med. 2010;81(8):745– 53; doi: 10.3357/asem.2659.2010.
 
46.
Blacker SD, Fallowfield JL, Bilzon JLJ, Willems MET. Neuromuscular impairment following backpack load carriage. J Hum Kinet. 2013;37:91–8; doi: 10.2478/hukin-2013-0029.
 
47.
Grenier JG, Millet GY, Peyrot N, Samozino P, Oullion R, Messonnier L, Morin J-B. Effects of extreme-duration heavy load carriage on neuromuscular function and locomotion: a militarybased study. PLoS One. 2012;7(8):e43586; doi: 10.1371/journal.pone.0043586.
 
48.
Millet GY, Lepers R. Alterations of neuromuscular function after prolonged running, cycling and skiing exercises. Sports Med. 2004;34(2): 105–16; doi: 10.2165/00007256-200434020- 00004.
 
49.
Krüger RL, Aboodarda SJ, Jaimes LM, MacIntosh BR, Samozino P, Millet GY. Fatigue and recovery measured with dynamic properties versus isometric force: effects of exercise intensity. J Exp Biol. 2019;222(Pt 9):jeb197483; doi: 10.1242/jeb. 197483.
 
50.
Attwells RL, Birrell SA, Hooper RH, Mansfield NJ. Influence of carrying heavy loads on soldiers’ posture, movements and gait. Ergonomics. 2006;49(14): 1527–37; doi: 10.1080/00140130600757237.
 
51.
Gordon MJ, Goslin BR, Graham T, Hoare J. Comparison between load carriage and grade walking on a treadmill. Ergonomics. 1983;26(3):289–98; doi: 10.1080/00140138308963342.
 
52.
Lloyd R, Cooke C. Biomechanical differences associated with two different load carriage systems and their relationship to economy. Hum Mov. 2011; 12(1):65–74; doi: 10.2478/v10038-011-0006-x.
 
53.
Strube EM, Sumner A, Kollock R, Games KE, Lackamp MA, Mizutani M, Sefton JM. The effect of military load carriage on postural sway, forward trunk lean, and pelvic girdle motion. Int J Exerc Sci. 2017;10(1):25–36.
 
54.
Schiffman JM, Bensel CK, Hasselquist L, Gregorczyk KN, Piscitelle L. Effects of carried weight on random motion and traditional measures of postural sway. Appl Ergon. 2006;37(5):607–14; doi: 10.1016/j.apergo.2005.10.002.
 
55.
Walsh GS, Harrison I. Gait and neuromuscular dynamics during level and uphill walking carrying military loads. Eur J Sport Sci. 2022;22(9): 1364–73; doi: 10.1080/17461391.2021.1953154.
 
56.
Rice H, Fallowfield J, Allsopp A, Dixon S. Influence of a 12.8-km military load carriage activity on lower limb gait mechanics and muscle activity. Ergonomics. 2017;60(5):649–56; doi: 10.1080/ 00140139.2016.1206624.
 
57.
Harman E, Han KH, Frykman P, Pandorf C. The effects of backpack weight on the biomechanics of load carriage. Natick (MA): US Army Research Institute of Environmental Medicine. 2000 May 3. Report No: OMB 0704-0188.
 
58.
Paul S, Bhattacharyya D, Chatterjee T, Majumdar D. Effect of uphill walking with varying grade and speed during load carriage on muscle activity. Ergonomics. 2016;59(4):514–25; doi: 10.1080/ 00140139.2015.1073792.
 
59.
Sessoms PH, Gobrecht M, Niederberger BA, Sturdy JT, Collins JD, Dominguez JA, Jaworski RL, Kelly KR. Effect of a load distribution system on mobility and performance during simulated and field hiking while under load. Ergonomics. 2020; 63(2):133–44; doi: 10.1080/00140139.2019.169 0710.
 
60.
Tilbury-Davis DC, Hooper RH. The kinetic and kinematic effects of increasing load carriage upon the lower limb. Hum Mov Sci. 1999;18(5):693– 700; doi: 10.1016/S0167-9457(99)00026-3.
 
61.
Park H, Branson D, Petrova A, Peksoz S, Jacobson B, Warren A, Goad C, Kamenidis P. Impact of ballistic body armour and load carriage on walking patterns and perceived comfort. Ergonomics. 2013;56(7):1167–79; doi: 10.1080/00140139.2013. 791377.
 
62.
Majumdar D, Pal MS, Majumdar D. Effects of military load carriage on kinematics of gait. Ergonomics. 2010;53(6):782–91; doi: 10.1080/001401 31003672015.
 
63.
Morrison A, Hale J, Brown S. Joint range of motion entropy changes in response to load carriage in military personnel. Hum Mov Sci. 2019;66:249– 57; doi: 10.1016/j.humov.2019.04.014.
 
64.
Yoshikawa T, Mori S, Santiesteban AJ, Sun TC, Hafstad E, Chen J, Burr DB. The effects of muscle fatigue on bone strain. J Exp Biol. 1994;188:217– 33; doi: 10.1242/jeb.188.1.217.
 
65.
Voloshin AS, Mizrahi J, Verbitsky O, Isakov E. Dynamic loading on the human musculoskeletal system – effect of fatigue. Clin Biomech. 1998;13(7): 515–20; doi: 10.1016/s0268-0033(98)00030-8.
 
66.
Lindner T, Schulze C, Woitge S, Finze S, Mittelmeier W, Bader R. The effect of the weight of equipment on muscle activity of the lower extremity in soldiers. ScientificWorldJournal. 2012;2012: 976513; doi: 10.1100/2012/976513.
 
67.
Eston RG, Mickleborough J, Baltzopoulos V. Eccentric activation and muscle damage: biomechanical and physiological considerations during downhill running. Br J Sports Med. 1995;29(2): 89–94; doi: 10.1136/bjsm.29.2.89.
 
68.
Bontemps B, Vercruyssen F, Gruet M, Louis J. Downhill running: what are the effects and how can we adapt? A narrative review. Sports Med. 2020;50(12):2083–110; doi: 10.1007/s40279-020 -01355-z.
 
69.
Gandevia SC. Spinal and supraspinal factors in human muscle fatigue. Physiol Rev. 2001;81(4): 1725–89; doi: 10.1152/physrev.2001.81.4.1725.
 
70.
Behrens M, Gube M, Chaabene H, Prieske O, Zenon A, Broscheid K-C, Schega L, Husmann F, Weippert M. Fatigue and human performance: an updated framework. Sports Med. 2023;53(1): 7–31; doi: 10.1007/s40279-022-01748-2.
 
71.
Beelen M, Burke LM, Gibala MJ, van Loon LJC. Nutritional strategies to promote postexercise recovery. Int J Sport Nutr Exerc Metab. 2010;20(6): 515–32; doi: 10.1123/ijsnem.20.6.515.
 
72.
Kerksick CM, Arent S, Schoenfeld BJ, Stout JR, Campbell B, Wilborn CD, Taylor L, Kalman D, Smith-Ryan AE, Kreider RB, Willoughby D, Arciero PJ, VanDusseldorp TA, Ormsbee MJ, Wildman R, Greenwood M, Ziegenfuss TN, Aragon AA, Antonio J. International society of sports nutrition position stand: nutrient timing. J Int Soc Sports Nutr. 2017;14:33; doi: 10.1186/s12970-017-0189-4.
 
73.
Barbieri FA, dos Santos PCR, Vitório R, van Dieën JH, Gobbi LTB. Effect of muscle fatigue and physical activity level in motor control of the gait of young adults. Gait Posture. 2013;38(4):702–7; doi: 10.1016/ j.gaitpost.2013.03.006.
 
74.
Barbieri FA, dos Santos PCR, Simieli L, Orcioli- Silva D, van Dieën JH, Gobbi LTB. Interactions of age and leg muscle fatigue on unobstructed walking and obstacle crossing. Gait Posture. 2014;39(3): 985–90; doi: 10.1016/j.gaitpost.2013.12.021.
 
75.
Linnamo V, Häkkinen K, Komi PV. Neuromuscular fatigue and recovery in maximal compared to explosive strength loading. Eur J Appl Physiol. 1997;77:176–81; doi: 10.1007/s004210050317.
 
76.
Wang C. [Retracted] sports-induced fatigue recovery of competitive aerobics athletes based on health monitoring. Comput Intell Neurosci. 2022; 2022:9542397; doi: 10.1155/2022/9542397.
 
77.
Wang H, Frame J, Ozimek E, Leib D, Dugan EL. The effects of load carriage and muscle fatigue on lower-extremity joint mechanics. Res Q Exerc Sport. 2013;84(3):305–12; doi: 10.1080/0270 1367.2013.814097.
 
78.
Osternig L, James C, Bercades D. Effects of movement speed and joint position on knee flexor torque in healthy and post-surgical subjects. Eur J Appl Physiol. 1999;80:100–6; doi: 10.1007/s00421 0050564.
 
79.
Strazza A, Mengarelli A, Agostini V, Knaflitz M, Burattini L, Fioretti S, Di Nardo F. Dynamic knee muscle co-contraction quantified during walking. Annu Int Conf IEEE Eng Med Biol Soc. 2016; 2016:3692–95; doi: 10.1109/EMBC.2016.7591529.
 
eISSN:1899-1955
Journals System - logo
Scroll to top