REVIEW PAPER
Biological and physical fitness adaptations in soccer players after jump training: a systematic scoping review
 
More details
Hide details
1
Symbiosis School of Sports Sciences, Symbiosis International (Deemed University), Pune, India
 
2
School of Education, Faculty of Human Sciences, Universidad Bernardo O’Higgins, Santiago, Chile
 
3
Department of Physical Activity Sciences. Universidad de Los Lagos, Osorno, Chile
 
4
School of Health Sciences and Physiotherapy, University of Notre Dame Australia, Fremantle, Australia
 
5
Research Centre in Sports, Health and Human Development, University of Beira Interior, Covilhã, Portugal
 
6
Department of Health and Sports Sciences, Faculty of Health Sciences, South East Technological University (Kilkenny Road Campus), Carlow, Ireland
 
7
Centre of Research, Faculty of Sport, Education, Innovation, and Intervention in Sport (CIFI2D), University of Porto, Porto, Portugal
 
8
Exercise and Rehabilitation Sciences Institute, Faculty of Rehabilitation Sciences, Universidad Andres Bello, Santiago, Chile
 
9
Sport Sciences and Human Performance Laboratories, Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Chile
 
 
Submission date: 2024-09-30
 
 
Acceptance date: 2025-01-08
 
 
Publication date: 2025-03-31
 
 
Corresponding author
Rodrigo Ramirez-Campillo   

Universidad Andres Bello, Campus Casona, Las Condes, Santiago, Chile
 
 
Hum Mov. 2025;26(1):15-41
 
KEYWORDS
TOPICS
ABSTRACT
Purpose:
To conduct a systematic scoping review assessing the effects of jump training in soccer players physical fitness.

Methods:
Included studies incorporated: (i) soccer players; (ii) jump-training interventions; and (iii) outcomes related to physical fitness (e.g. endurance). Selection was not based on comparator groups and/or study designs. PubMed, Web of Science, and Scopus databases were searched for documents. One author led the process, and a second author independently verified the process. The type of outcome measure determined studies aggrupation [e.g. vertical jump (e.g. height; contact time)], with a narrative synthesis accompanied by data summaries (e.g. percentage).

Results:
Included studies involved males (adults k = 25; youths k = 52) and females (adults k = 8; youths k = 3). Nonrandomised interventions (single-arm and multi-arm) comprised ~40% of the studies, with durations between 3–96 weeks, and improvements in 1 outcome, including body composition, stiffness, electromyographic activity, potential injury risk factors, kicking velocity, repeated sprint ability, linear sprinting, endurance, balance, maximal strength, and jump performance. However, only 10-13 participants were involved in jump training groups. Further, false significant results and publication bias in favour of studies with significant findings are potentially common issues in the available literature.

Conclusions:
Jump training may improve physical fitness in soccer players. However, methodological issues (e.g. non-randomisedcontrolled studies) and evidence gaps (e.g. fewer female studies) were noted. More and better-designed jump training studies on soccer participants are advised before robust recommendations regarding optimal jump training regimens can be made.
REFERENCES (234)
1.
FIFA, FIFA Big Count 2006: 270 million people active in football. FIFA Communications Division, Information Services; 2007.
 
2.
Rattanapian P, Tingsabhat J, Kanungsukkasem V. Factors influencing achievement of Regional League Division 2 football tournament management. Kasetsart J Social Sci. 2018;39(3):542–9; doi 10.1016/j.kjss.2017.07.014.
 
3.
Datson N, Hulton A, Andersson H, Lewis T, Weston M, Drust B, Gregson W. Applied physiology of female soccer: an update. Sports Med. 2014;44(9): 1225–40; doi: 10.1007/s40279-014-0199-1.
 
4.
Stølen T, Chamari K, Castagna C, Wisløff U. Physiology of soccer: an update. Sports Med. 2005;35(6): 501–36; doi: 10.2165/00007256-200535060- 00004.
 
5.
Vaeyens R, Malina RM, Janssens M, Van Renterghem B, Bourgois J, Vrijens J, Philippaerts RM. A multidisciplinary selection model for youth soccer: the Ghent Youth Soccer Project. Br J Sports Med. 2006;40(11):928–34; doi: 10.1136/bjsm. 2006.029652.
 
6.
le Gall F, Carling C, Williams M, Reilly T. Anthropometric and fitness characteristics of international, professional and amateur male graduate soccer players from an elite youth academy. J Sci Med Sport. 2010;13(1):90–5; doi: 10.1016/j. jsams.2008.07.004.
 
7.
Meylan C, Cronin J, Oliver J, Hughes M, Manson S. An evidence-based model of power development in youth soccer. Int J Sports Sci Coach. 2014;9(5): 1241–64.
 
8.
FIFA, 2014 FIFA World Cup Brazil. Technical report and statistics. Zurich, Switzerland: Federation Internationale de Football Association, 2014.
 
9.
Bush M, Barnes C, Archer DT, Hogg B, Bradley PS. Evolution of match performance parameters for various playing positions in the English Premier League. Hum Mov Sci. 2015;39:1–11; doi: 10.1016/j.humov.2014.10.003.
 
10.
Slimani M, Nikolaidis PT. Anthropometric and physiological characteristics of male soccer players according to their competitive level, playing position and age group: a systematic review. J Sports Med Phys Fitness. 2019;59(1):141–63; doi: 10.23 736/s0022-4707.17.07950-6.
 
11.
Clement FM, Garrett JM, González-Fernández FT, Silva AF, Nobari H. Testing variations of methodological characteristics on the 5-0-5 test: impact of the linear sprint on change-of-direction deficit of adult male soccer players. Hum Mov. 2023;24(2): 127–35; doi: 10.5114/hm.2023.126154.
 
12.
Faude O, Koch T, Meyer T. Straight sprinting is the most frequent action in goal situations in professional football. J Sports Sci. 2012;30(7):625– 31; doi: 10.1080/02640414.2012.665940.
 
13.
Castellano J, Casamichana D, Lago C. The use of match statistics that discriminate between successful and unsuccessful soccer teams. J Hum Kinet. 2012;31:139–47; doi: 10.2478/v10078- 012-0015-7.
 
14.
Liu H, Hopkins WG, Gómez MA. Modelling relationships between match events and match outcome in elite football. Eur J Sport Sci. 2016;16(5): 516–25; doi: 10.1080/17461391.2015.1042527.
 
15.
Yi Q, Ruano M, Liu H, Sampaio J. Variation of match statistics and football teams’ match performance in the group stage of the EUFA Champions league from 2010 to 2017. Kinesiology. 2019; 51(2):170–81.
 
16.
Rodríguez-Lorenzo L, Fernandez-Del-Olmo M, Sanchez-Molina JA, Martín-Acero R. Role of vertical jumps and anthropometric variables in maximal kicking ball velocities in elite soccer players. J Hum Kinet. 2016;53:143–54; doi: 10.1515/ hukin-2016-0018.
 
17.
Arnason A, Sigurdsson SB, Gudmundsson A, Holme I, Engebretsen L, Bahr R. Physical fitness, injuries, and team performance in soccer. Med Sci Sports Exerc. 2004;36(2):278–85; doi: 10.1249/ 01.MSS.0000113478.92945.CA.
 
18.
Helgerud J, Engen LC, Wisloff U, Hoff J. Aerobic endurance training improves soccer performance. Med Sci Sports Exerc. 2001;33(11):1925-31.
 
19.
Ramirez-Campillo R, Garcia-Pinillos F, Chaabene H, Moran J, Behm DG, Granacher U. Effects of plyometric jump training on electromyographic activity and its relationship to strength and jump performance in healthy trained and untrained populations: a systematic review of randomized controlled trials. J Strength Cond Res. 2021;35(7): 2053–65; doi: 10.1519/jsc.0000000000004056.
 
20.
Ramirez-Campillo R, Moran J, Chaabene H, Granacher U, Behm DG, Garcia-Hermoso A, Izquierdo M. Methodological characteristics and future directions for plyometric jump training research: a scoping review update. Scand J Med Sci Sports. 2020;30(6):983–97; doi: 10.1111/sms.13633.
 
21.
Ebben WP, Jensen RL, Blackard DO. Electromyographic and kinetic analysis of complex training variables. J Strength Cond Res. 2000;14(4):451–6.
 
22.
Lloyd RS, J Oliver L, Hughes MG, Williams CA. The effects of 4-weeks of plyometric training on reactive strength index and leg stiffness in male youths. J Strength Cond Res. 2012;26(10):2812–9; doi: 10.1519/JSC.0b013e318242d2ec.
 
23.
Cappa DF, Behm DG. Neuromuscular characteristics of drop and hurdle jumps with different types of landings. J Strength Cond Res. 2013;27(11): 3011–20; doi: 10.1519/JSC.0b013e31828c28b3.
 
24.
Flanagan EP, Comyns TM. The use of contact time and the reactive strength index to optimize fast stretch-shortening cycle training. Strength Cond J. 2008;30(5):32–8; doi: 10.1519/SSC.0b013e31 8187e25b.
 
25.
Schmidtbleicher D. Training for power events. In: Komi PV (ed.). Strength and Power in Sport. Oxford: Blackwell Science; 1992, pp. 381–95.
 
26.
Ebben WP, Fauth ML, Garceau LR, Petushek EJ. Kinetic quantification of plyometric exercise intensity. J Strength Cond Res. 2011;25(12):3288– 98; doi: 10.1519/JSC.0b013e31821656a3.
 
27.
Pedley JS, Lloyd RS, Read P, Moore IS, Oliver JL. Drop jump: a technical model for scientific application. Strength Cond J. 2017;39(5):36–44; doi: 10.1519/ssc.0000000000000331.
 
28.
Komi PV. Stretch-shortening cycle. In: Komi PV (ed.). Strength and Power in Sport. Oxford: Blackwell Science; 2003, pp. 184–202.
 
29.
Radnor JM, Oliver JL, Waugh CM, Myer GD, Moore IS, Lloyd RS. The influence of growth and maturation on stretch-shortening cycle function in youth. Sports Med. 2018;48(1):57–71; doi: 10.1007/s40279-017-0785-0.
 
30.
Taube W, Leukel C, Gollhofer A. How neurons make us jump: the neural control of stretch-shortening cycle movements. Exerc Sport Sci Rev. 2012; 40(2):106–15; doi: 10.1097/JES.0b013e3182413 8da.
 
31.
Iida Y, Kanehisa H, Inaba Y, Nakazawa K. Shortterm landing training attenuates landing impact and improves jump height in landing-to-jump movement. J Strength Cond Res. 2013;27(6):1560– 7; doi: 10.1519/JSC.0b013e318271276e.
 
32.
Hewett TE, Stroupe AL, Nance TA, Noyes FR. Plyometric training in female athletes. Decreased impact forces and increased hamstring torques. Am J Sports Med. 1996;24(6):765–73.; doi: 10.1177/ 036354659602400611.
 
33.
Howell KC. Training for landing and cutting stability in young female basketball and soccer players. Strength Cond J. 2013;35(2):66–78; doi: 10.1519/SSC.0b013e31828b9a23.
 
34.
Jimenez-Reyes P, Samozino P, Brughelli M, Morin JB. Effectiveness of an individualized training based on force-velocity profiling during jumping. Front Physiol. 2017;7:677; doi: 10.3389/fphys. 2016.00677.
 
35.
Bouguezzi R, Chaabene H, Negra Y, Moran J, Sammoud S, Ramirez-Campillo R, Granacher U, Hachana Y. Effects of jump exercises with and without stretch-shortening cycle actions on components of physical fitness in prepubertal male soccer players. Sport Sci Health. 2020;16(2):297–304; doi: 10.1007/s11332-019-00605-6.
 
36.
Ducrocq GP, Hureau TJ, Meste O, Blain GM. Similar cardioventilatory but greater neuromuscular stimuli with interval drop jump than with interval running. Int J Sports Physiol Perform, 2020; 15(3):330–9; doi: 10.1123/ijspp.2019-0031.
 
37.
Singh U, Ramachandran AK, Ramirez-Campillo R, Perez-Castilla A, Afonso A, Clemente FM, Oliver J. Jump rope training effects on health- and sport-related physical fitness in young participants: a systematic review with meta-analysis. J Sports Sci. 2022;40(16):1801–14; doi: 10.1080/ 02640414.2022.2099161.
 
38.
Ramirez-Campillo R, Perez-Castilla A, Thapa RK, Afonso J, Clemente FM, Colado JC, de Villarreal ES, Chaabene H. Effects of plyometric jump training on measures of physical fitness and sportspecific performance of water sports athletes: a systematic review with meta-analysis. Sports Med Open. 2022;8(1):108; doi: 10.1186/s40798- 022-00502-2.
 
39.
Jimenez-Reyes P, Garcia-Ramos A, Parraga-Montilla JA, Morcillo-Losa JA, Cuadrado-Penafiel V, Castano-Zambudio A, Samozino P, Morin JB. Seasonal changes in the sprint acceleration force-velocity profile of elite male soccer players. J Strength Cond Res. 2022;36(1):70–4; doi: 10.1519/jsc.000 0000000003513.
 
40.
Jiménez-Reyes P, Samozino P, Brughelli M, Morin JB. Effectiveness of an individualized training based on force-velocity profiling during jumping. Front Physiol. 2017;7(677); doi: 10.3389/fphys. 2016.00677.
 
41.
Jimenez-Reyes P, Samozino P, Morin JB. Optimized training for jumping performance using the force-velocity imbalance: individual adaptation kinetics. PLOS ONE. 2019;14(5):e0216681; doi: 10.1371/journal.pone.0216681.
 
42.
James RS, Navas CA, Herrel A. How important are skeletal muscle mechanics in setting limits on jumping performance? J Exp Biol. 2007;210(6): 923–33; doi: 10.1242/jeb.02731.
 
43.
Reiser RFIR, Rocheford EC, Armstrong CJ. Building a better understanding of basic mechanical principles through analysis of the vertical jump. Strength Cond J. 2006;28(4):70–80.
 
44.
Turner AN, Comfort P, McMahon J, Bishop C, Chavda S, Read P, Mundy P, Lake J. Developing powerful athletes, part 1: mechanical underpinnings. Strength Cond J. 2020;42(3):30–9; doi: 10.1519/ssc.0000000000000543.
 
45.
Coyle EF. Integration of the physiological factors determining endurance performance ability. Exerc Sport Sci Rev. 1995;23:25–63.
 
46.
Bishop DJ, Girard O. Determinants of team-sport performance: implications for altitude training by team-sport athletes. Br J Sports Med. 2013;47 (Suppl 1):i17–21; doi: 10.1136/bjsports-2013-09 2950.
 
47.
Ramirez-Campillo R, Alvarez C, Garcia-Hermoso A, Ramirez-Velez R, Gentil P, A Asadi, Chaabene H, Moran J, Meylan C, Garcia-de-Alcaraz A, Sanchez-Sanchez J, Nakamura FY, Granacher U, Kraemer W, Izquierdo M. Methodological characteristics and future directions for plyometric jump training research: a scoping review. Sports Med. 2018;48(5):1059–81; doi: 10.1007/s40279- 018-0870-z.
 
48.
Suchomel TJ, Taber CB, Sole CJ, Stone MH. Forcetime differences between ballistic and non-ballistic half-squats. Sports. 2018;6(3); doi: 10.3390/ sports6030079.
 
49.
Cormie P, McGuigan MR, Newton RU. Developing maximal neuromuscular power: Part 2 training considerations for improving maximal power production. Sports Med. 2011;41(2):125–46; doi: 10.2165/11538500-000000000-00000.
 
50.
Chu, D, Myer G. Plyometrics. Champaign: Human Kinetics; 2013.
 
51.
Gentil P, Ramirez-Campillo R, Souza D. Resistance training in face of the coronavirus outbreak: time to think outside the box. Front Physiol. 2020; 11:859; doi: 10.3389/fphys.2020.00859.
 
52.
Ward P, Hodges N, Williams AM. The road excellence in soccer: deliberate practice and the development of expertise. High Ability Stud. 2007; 18(2):119–53; doi: 10.1080/13598130701709715.
 
53.
Stege MHPT, Dallinga JM, Benjaminse A, Lemmink KAPM. Effect of interventions on potential, modifiable risk factors for knee injury in team ball sports: a systematic review. Sports Med. 2014; 44(10):1403–26; doi: 10.1007/s40279-014-0216-4.
 
54.
Rossler R, Donath L Verhagen, E, Junge A, Schweizer T, Faude O. Exercise-based injury prevention in child and adolescent sport: a systematic review and meta-analysis. Sports Med. 2014;44(12):1733– 48; doi: 10.1007/s40279-014-0234-2.
 
55.
Hewett TE, Myer GD, Ford KR. Reducing knee and anterior cruciate ligament injuries among female athletes: a systematic review of neuromuscular training interventions. J Knee Surg. 2005; 18(1):82–8; doi: 10.1055/s-0030-1248163.
 
56.
Yuill EA, Pajaczkowski JA, Howitt SD. Conservative care of sports hernias within soccer players: a case series. J Bodyw Mov Ther. 2012;16(4):540– 8; doi: 10.1016/j.jbmt.2012.04.004.
 
57.
Ramirez-Campillo R, Alvarez C, García-Pinillos F, Gentil P, Moran J, Pereira LA, Loturco I. Plyometric training in young male soccer players: potential effect of jump height. Pediatr Exerc Sci. 2019;31(3):306–13.
 
58.
Loturco I, Pereira LA, Kobal R, Zanetti V, Kitamura K, CCC Abad, Nakamura FY. Transference effect of vertical and horizontal plyometrics on sprint performance of high-level U-20 soccer players. J Sports Sci. 2015;33(20):2182–91; doi: 10.1080/02640414.2015.1081394.
 
59.
Loturco I, Tricoli V, Roschel H, Nakamura FY, Cal Abad CC, Kobal R, Gil S, Gonzalez-Badillo JJ. Transference of traditional versus complex strength and power training to sprint performance. J Hum Kinet. 2014;41:265–73; doi: 10.2478/hukin-2014- 0054.
 
60.
Ramirez-Campillo R, Miñano J, Sanchez-Sanchez J. Effects of plyometric jump training on soccer players physical performance [in Spanish]. Rev Prep Fis Futbol. 2019;30:1–10.
 
61.
Abt G, Boreham C, Davison G, Jackson R, Nevill A, Wallace E, Williams M. Power, precision, and sample size estimation in sport and exercise science research. J Sports Sci. 2020;38(17):1933–5; doi: 10.1080/02640414.2020.1776002.
 
62.
Ramirez-Campillo R, Sanchez-Sanchez J, Romero- Moraleda B, Yanci J, Garcia-Hermoso A, Clemente FM Effects of plyometric jump training in female soccer player’s vertical jump height: a systematic review with meta-analysis. J Sports Sci. 2020;38(13):1475–87; doi: 10.1080/02640414. 2020.1745503.
 
63.
Ramirez-Campillo R, Castillo D, Raya-González J, Moran J, de Villarreal ES, Lloyd RS. Effects of plyometric jump training on jump and sprint performance in young male soccer players: a systematic review and meta-analysis. Sports Med. 2020; 50(12):2125–43 doi: 10.1007/s40279-020-01337-1.
 
64.
Tack C. Evidence-based guidelines for strength and conditioning in mixed martial arts. Strength Cond J. 2013;35(5):79–92.
 
65.
Murad MH, Asi N, Alsawas M, Alahdab F. New evidence pyramid. Evid Based Med. 2016;21(4): 125–7; doi: 10.1136/ebmed-2016-110401.
 
66.
Rao G, Lopez-Jimenez F, Boyd J, D’Amico F, Durant NH, Hlatky MA, Howard G, Kirley K, Masi C, Powell-Wiley TM, Solomonides AE, West CP, Wessel J. Methodological standards for meta-analyses and qualitative systematic reviews of cardiac prevention and treatment studies: a scientific statement from the American heart association. Circulation. 2017;136(10):172–94; doi: 10.1161/ cir.0000000000000523.
 
67.
Gentil P, Arruda A, Souza D, Giessing J, Paoli A, Fisher J, Steele J. Is there any practical application of meta-analytical results in strength training? Front Physiol. 2017;8:1–10; doi: 10.3389/fphys. 2017.00001.
 
68.
Doleman B, Williams JP, Lund J. Why most published meta-analysis findings are false. Tech Coloproctol. 2019;23(9):925–8; doi: 10.1007/s10151- 019-02020-y.
 
69.
García-Mateo P, Ramirez-Campillo R, García-De- Alcaraz A, Rodríguez-Pérez MA.A meta-analysis of the effects of strength training on arterial stiffness. Hum Mov. 2023;24(2):1–17; doi: 10.5114/ hm.2023.117126.
 
70.
Ramirez-Campillo R, Andrade DC, Clemente FM, Afonso J, Pérez-Castilla A, Gentil P. A proposed model to test the hypothesis of exercise-induced localized fat reduction (spot reduction), including a systematic review with meta-analysis. Hum Mov. 2022;23(3):1–14; doi: 10.5114/hm.2022.110373.
 
71.
Tricco AC, Lillie E, Zarin W, O’Brien KK, Colquhoun H, Levac D, Moher D, Peters MDJ, Horsley T, Weeks L, Hempel S, Akl EA, Chang C, McGowan J, Stewart L, Hartling L, Aldcroft A, Wilson MG, Garritty C, Lewin S, Godfrey CM, Macdonald MT, Langlois EV, Soares-Weiser K, Moriarty J, Clifford T, Tuncalp O, Straus SE. PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Ann Intern Med. 2018;169(7):467– 73; doi: 10.7326/M18-0850.
 
72.
Peters MDJ, Godfrey C, McInerney P, Khalil H, Larsen P, Marnie C, Pollock D, Tricco AC, Munn Z. Best practice guidance and reporting items for the development of scoping review protocols. JBI Evid Synth. 2022;20(4):953–68; doi: 10.11124/jbies- 21-00242.
 
73.
Schuller-Martínez B, Meza N, Pérez-Bracchiglione J, Franco JVA, Loezar C, Madrid E. Graphical representation of the body of the evidence: the essentials for understanding the evidence gap map approach. Medwave. 2021;21(3):e8164; doi: 10.5867/ medwave.2021.03.8164.
 
74.
Snilstveit B, Vojtkova M, Bhavsar A, Stevenson J, Gaarder M. Evidence & Gap Maps: a tool for promoting evidence informed policy and strategic research agendas. J Clin Epidemiol. 2016;79:120– 9; doi: 10.1016/j.jclinepi.2016.05.015.
 
75.
Miake-Lye IM, Hempel S, Shanman R, Shekelle PG. What is an evidence map? A systematic review of published evidence maps and their definitions, methods, and products. Syst Rev. 2016;5: 28; doi: 10.1186/s13643-016-0204-x.
 
76.
Tayfur A, Haque A, Salles JI, Malliaras P, Screen H, Morrissey D. Are landing patterns in jumping athletes associated with patellar tendinopathy? A systematic review with evidence gap map and meta-analysis. Sports Med. 2022;52(1):123– 37; doi: 10.1007/s40279-021-01550-6.
 
77.
Budarick AR, Moyer RF. Linking physical activity with clinical, functional, and structural outcomes: an evidence map using the osteoarthritis initiative. Clin Rheumatol. 2022;41(4):965–75; doi: 10.1007/s10067-021-05995-y.
 
78.
Alsaleh SA, Murphy NA, Miller SC, Morrissey D, Lack SD. Local neuromuscular characteristics associated with patellofemoral pain: a systematic review and meta-analysis. Clin Biomech. 2021; 90:105509; doi: 10.1016/j.clinbiomech.2021.10 5509.
 
79.
Wang YC, Zhang N, Effects of plyometric training on soccer players. Exp Ther Med. 2016;12(2): 550-554; doi: 10.3892/etm.2016.3419.
 
80.
Ramirez-Campillo R, Moran J, Oliver JL, Pedley JS, Lloyd RS, Granacher U. Programming plyometric- jump training in soccer: a review. Sports. 2022;10(6):94; doi: 10.3390/sports10060094.
 
81.
Page MJ, McKenzie JE, Bossuyt PM, I. Boutron, T.C. Hoffmann, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, Moher D. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71; doi: 10.1136/ bmj.n71.
 
82.
Tricco AC, Lillie E, Zarin W, O’Brien KK, Colquhoun H, Levac D, Moher D, Peters MDJ, Horsley T, Weeks L, Hempel S, Akl EA, Chang C, McGowan J, Stewart L, Hartling L, Aldcroft A, Wilson MG, Garritty C, Lewin S, Godfrey CM, Macdonald MT, Langlois EV, Soares-Weiser K, Moriarty J, Clifford T, Tunçalp Ö, Straus SE. PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Ann Intern Med. 2018; 169(7):467–73; doi: 10.7326/m18-0850.
 
83.
Higgins JPT, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (eds.). Cochrane Handbook for Systematic Reviews of Interventions version 6.4 (updated August 2023). Cochrane. 2023. Available from: www.training.cochrane.org/handbook (accessed 06.10.2022).
 
84.
Roopchand-Martin S, Lue-Chin P. Plyometric training improves power and agility in Jamaica’s national netball team. West Indian Med J. 2010; 59(2):182–7.
 
85.
Markovic G, Mikulic P. Neuro-musculoskeletal and performance adaptations to lower-extremity plyometric training. Sports Med. 2010;40(10): 859–95; doi: 10.2165/11318370-000000000-0 0000.
 
86.
Arksey H, O’Malley L. Scoping studies: towards a methodological framework. Int J Soc Res Methodol. 2005;8(1):19–32; doi: 10.1080/136455703 2000119616.
 
87.
Lefebvre CG, Glanville J, Briscoe S, Featherstone B, Littlewood A, Marshall C, Metzendorf MI, Noel- Storr A, Paynter R, Rader T, Thomas R, Wieland LS; on behalf of the Cochrane Information Retrieval Methods Group. Searching for and selecting studies. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (eds.). Cochrane Handbook for Systematic Reviews of Interventions. Version 6.3 (updated February 2022). Cochrane. 2022. Available from www.training. cochrane.org/handbook (accessed 15.09.2024).
 
88.
Expertscape. Available 25.10.2020 from: https:// www.expertscape.com/ex/plyometric+exercise.
 
89.
Armstrong R, Hall BJ, Doyle J, Waters E. Cochrane update. ‘Scoping the scope’ of a Cochrane review. J Public Health. 2011;33(1):147–50; doi: 10.1093/pubmed/fdr015.
 
90.
Levac D, Colquhoun H, O’Brien KK. Scoping studies: advancing the methodology. Implement Sci. 2010;5:69; doi: 10.1186/1748-5908-5-69.
 
91.
Granacher U, Lesinski M, Büsch D, Muehlbauer T, Prieske O, Puta C, Gollhofer A, Behm DG. Effects of resistance training in youth athletes on muscular fitness and athletic performance: a conceptual model for long-term athlete development. Front Physiol. 2016;7:164 doi: 10.3389/fphys. 2016.00164.
 
92.
Grieco CR, Cortes N, Greska EK, Lucci S, Onate JA. Effects of a combined resistance-plyometric training program on muscular strength, running economy, and Vo2peak in division I female soccer players. J Strength Cond Res. 2012;26(9): 2570–6; doi: 10.1519/JSC.0b013e31823db1cf.
 
93.
Sedano Campo S, Vaeyens R, Philippaerts RM, Redondo JC, de Benito AM, Cuadrado G. Effects of lower-limb plyometric training on body composition, explosive strength, and kicking speed in female soccer players. J Strength Cond Res. 2009;23(6):1714–22; doi: 10.1519/JSC.0b013e3 181b3f537.
 
94.
Rosas F, Ramirez-Campillo R, Martinez C, Caniuqueo A, Canas-Jamet R, McCrudden E, Meylan C, Moran J, Nakamura FY, Pereira LA, Loturco I, Diaz D, Izquierdo M. Effects of plyometric training and beta-alanine supplementation on maximal- intensity exercise and endurance in female soccer players. J Hum Kinet. 2017;58(1):99–109; doi: 10.1515/hukin-2017-0072.
 
95.
Ramirez-Campillo R, Gonzalez-Jurado JA, Martinez C, Nakamura FY, Penailillo L, Meylan CMP, Caniuqueo A, Canas-Jamet R, Moran J, Alonso- Martinez AM, Izquierdo M. Effects of plyometric training and creatine supplementation on maximal- intensity exercise and endurance in female soccer players. J Sci Med Sport. 2016;19(8):682– 7; doi: 10.1016/j.jsams.2015.10.005.
 
96.
Greska EK, Cortes N, Van Lunen BL, Oñate JA. A feedback inclusive neuromuscular training program alters frontal plane kinematics. J Strength Cond Res. 2012;26(6):1609–19; doi: 10.1519/ JSC.0b013e318234ebfb.
 
97.
Ozbar N, Ates S, Agopyan A. The effect of 8-week plyometric training on leg power, jump and sprint performance in female soccer players. J Strength Cond Res. 2014;28(10):2888–94; doi: 10.1519/ jsc.0000000000000541.
 
98.
Ramirez-Campillo R, Vergara-Pedreros M, Henriquez- Olguin C, Martinez-Salazar C, Alvarez C, Nakamura FY, De La Fuente CI, Caniuqueo A, Alonso-Martinez AM, Izquierdo M. Effects of plyometric training on maximal-intensity exercise and endurance in male and female soccer players. J Sports Sci. 2016;34(8):687–93; doi: 10.1080/ 02640414.2015.1068439.
 
99.
Ramirez-Campillo R, Garcia-Pinillos F, Garcia- Ramos A, Yanci J, Gentil P, Chaabene H, Granacher U. Effects of different plyometric training frequencies on components of physical fitness in amateur female soccer players. Front Physiol. 2018; 9:934; doi: 10.3389/fphys.2018.00934.
 
100.
Siegler J, Gaskill S, Ruby B. Changes evaluated in soccer-specific power endurance either with or without a 10-week, in-season, intermittent, high-intensity training protocol. J Strength Cond Res. 2003;17(2):379–87.
 
101.
Taylor JB, KR Ford, Schmitz RJ, Ross SE, Ackerman TA, Shultz SJ. Sport-specific biomechanical responses to an ACL injury prevention programme: a randomised controlled trial. J Sports Sci. 2018;36(21):2492–501; doi: 10.1080/0264 0414.2018.1465723.
 
102.
Rubley MD, Haase AC, Holcomb WR, Girouard TJ, Tandy RD. The effect of plyometric training on power and kicking distance in female adolescent soccer players. J Strength Cond Res. 2011;25(1):129–34; doi: 10.1519/JSC.0b013e3 181b94a3d.
 
103.
Moore EWG, Hickey MS, Reiser RF. Comparison of two twelve week off-season combined training programs on entry level collegiate soccer players’ performance. J Strength Cond Res. 2005;19(4):791–8; doi: 10.1519/R-15384.1.
 
104.
Milenković D. Explosiveness in training process of football players. Sport Sci. 2013;6(2):72–6.
 
105.
Coratella G, Beato M, Milanese C, Longo S, Limonta E, Rampichini S, Ce E, Bisconti AV, Schena F, Esposito F. Specific adaptations in performance and muscle architecture after weighted jumpsquat vs. body mass squat jump training in recreational soccer players. J Strength Cond Res. 2018;32(4):921–29; doi: 10.1519/JSC.000 0000000002463.
 
106.
Chelly MS, Ghenem MA, Abid K, Hermassi S, Tabka Z, Shephard RJ. Effects of in-season shortterm plyometric training program on leg power, jump- and sprint performance of soccer players. J Strength Cond Res. 2010;24(10):2670–6; doi: 10.1519/JSC.0b013e3181e2728f.
 
107.
Sedano S, Matheu A, Redondo JC, Cuadrado G. Effects of plyometric training on explosive strength, acceleration capacity and kicking speed in young elite soccer players. J Sports Med Phys Fitness. 2011;51(1):50–8.
 
108.
Loturco I, Pereira LA, Kobal R, Zanetti V, Gil S, Kitamura K, Abad CCC, Nakamura FY. Halfsquat or jump squat training under optimum power load conditions to counteract power and speed decrements in Brazilian elite soccer players during the preseason. J Sports Sci. 2015;33(12): 1283–92; doi: 10.1080/02640414.2015.1022574.
 
109.
Lockie RG, Murphy AJ, Schultz AB, Knight TJ, de Jonge X. The effects of different speed training protocols on sprint acceleration kinematics and muscle strength and power in field sport athletes. J Strength Cond Res. 2012;26(6):1539– 50; doi: 10.1519/JSC.0b013e318234e8a0.
 
110.
McKinlay BJ, Wallace P, Dotan R, Long D, Tokuno C, Gabriel DA, Falk B. Effects of plyometric and resistance training on muscle strength, explosiveness, and neuromuscular function in young adolescent soccer players. J Strength Cond Res. 2018;32(11):3039–50; doi: 10.1519/JSC.00000 00000002428.
 
111.
Diallo O, Dore E, Duche P, Van Praagh E. Effects of plyometric training followed by a reduced training programme on physical performance in prepubescent soccer players. J Sports Med Phys Fitness. 2001;41(3):342–8.
 
112.
Ullrich B, Pelzer T, Pfeiffer M. Neuromuscular effects to 6 weeks of loaded countermovement jumping with traditional and daily undulating periodization. J Strength Cond Res. 2018;32(3): 660–74; doi: 10.1519/JSC.0000000000002290.
 
113.
Spineti J, Figueiredo T, De Oliveira VB, Assis M, De Oliveira LF, Miranda H, De Ribeiro Reis VMM, Simao R. Comparison between traditional strength training and complex contrast training on repeated sprint ability and muscle architecture in elite soccer players. J Sports Med Phys Fit. 2016;56(11):1269–78.
 
114.
Ronnestad BR, Kvamme NH, Sunde A, Raastad T. Short-term effects of strength and plyometric training on sprint and jump performance in professional soccer players. J Strength Cond Res. 2008;22(3):773–80; doi: 10.1519/JSC.0b013e3 1816a5e86.
 
115.
García-Pinillos F, Martínez-Amat A, Hita-Contreras F, Martínez-López EJ, Latorre-Román PA. Effects of a contrast training program without external load on vertical jump, kicking speed, sprint, and agility of young soccer players. J Strength Cond Res. 2014;28(9):2452–60; doi: 10.1519/JSC.0000000000000452.
 
116.
Michailidis Y, Fatouros IG, Primpa E, Michailidis C, Avloniti A, Chatzinikolaou A, Barbero- Alvarez JC, Tsoukas D, Douroudos II, Draganidis D, Leontsini D, Margonis K, Berberidou F, Kambas A. Plyometrics trainability in preadolescent soccer athletes. J Strength Cond Res. 2013; 27(1):38–49; doi: 10.1519/JSC.0b013e3182541 ec6.
 
117.
Chtara M, Rouissi M, Haddad M, Chtara H, Chaalali A, Owen A, Chamari K. Specific physical trainability in elite young soccer players: efficiency over 6 weeks’ in-season training. Biol Sport. 2017;34(2):137–48; doi: 10.5114/biolsport.2017. 64587.
 
118.
Michailidis Y, Tabouris A, Metaxas T. Effects of plyometric and directional training on physical fitness parameters in youth soccer players. Int J Sports Physiol Perform. 2019;14(3):392– 8; doi: 10.1123/ijspp.2018-0545.
 
119.
Negra Y, Chaabene H, Sammoud S, Bouguezzi R, Abbes MA, Hachana Y, Granacher U. Effects of plyometric training on physical fitness in prepuberal soccer athletes. Int J Sports Med. 2017;38(5): 370–7; doi: 10.1055/s-0042-122337.
 
120.
Meylan C, Malatesta D. Effects of in-season plyometric training within soccer practice on explosive actions of young players. J Strength Cond Res. 2009;23(9):2605–13; doi: 10.1519/JSC.0b 013e3181b1f330.
 
121.
Chaabene H, Negra Y. The effect of plyometric training volume on athletic performance in prepubertal male soccer players. Int J Sports Physiol Perform. 2017;12(9):1205–11; doi: 10.1123/ijspp 2016-0372.
 
122.
Reaper F, Bandy WD, Longinotti S, Carson AP, Hattleslad M, Culpepper H, Campbell M. The effect of using frontal shoe orthotics and plyometric training on selected functional measurements in junior high school football players. Isokinet Exerc Sci. 1996;6(1):45–9.
 
123.
Hammami M, Gaamouri N, Shephard RJ, Chelly MS. Effects of contrast strength vs. plyometric training on lower-limb explosive performance, ability to change direction and neuromuscular adaptation in soccer players. J Strength Cond Res. 2019;33(8):2094–103; doi: 10.1519/JSC.00000 00000002425.
 
124.
Lockie RG, Murphy AJ, Callaghan SJ, Jeffriess MD. Effects of sprint and plyometrics training on field sport acceleration technique. J Strength Cond Res. 2014;28(7):1790–801; doi: 10.1519/ jsc.0000000000000297.
 
125.
de Villarreal ESS, Izquierdo M, Gonzalez-Badillo JJ. Enhancing jump performance after combined vs. maximal power, heavy-resistance, and plyometric training alone. J Strength Cond Res. 2011;25(12):3274–81; doi: 10.1519/JSC.0b013 e3182163085.
 
126.
Carlson K, Magnusen M, Walters P. Effect of various training modalities on vertical jump. Res Sports Med. 2009;17(2):84–94; doi: 10.1080/ 15438620902900351.
 
127.
Myer GD, Ford KR, Brent JL, Hewett TE. The effects of plyometric vs. dynamic stabilization and balance training on power, balance, and landing force in female athletes. J Strength Cond Res. 2006;20(2):345–53; doi: 10.1519/R-17955.1.
 
128.
Myer GD, Ford KR, McLean SG, Hewett TE. The effects of plyometric versus dynamic stabilization and balance training on lower extremity biomechanics. Am J Sports Med. 2006;34(3): 445–55; doi: 10.1177/0363546505281241.
 
129.
Vlachopoulos D, Barker AR, Ubago-Guisado E, Williams CA, Gracia-Marco L. The effect of a high-impact jumping intervention on bone mass, bone stiffness and fitness parameters in adolescent athletes. Arch Osteop. 2018;13(1):128; doi: 10.1007/s11657-018-0543-4.
 
130.
Keiner M, Sander A, Wirth K, Schmidtbleicher D. The impact of 2 years of additional athletic training on the jump performance of young athletes. Sci Sports. 2014;29(4):39–46; doi: 10.1016/ j.scispo.2013.07.010.
 
131.
Mersmann F, Bohm S, Arampatzis A. Imbalances in the development of muscle and tendon as risk factor for tendinopathies in youth athletes: a review of current evidence and concepts of prevention. Front Physiol. 2017;8:987; doi: 10.3389/ fphys.2017.00987.
 
132.
Mersmann F, Bohm S, Schroll A, Boeth H, Duda G, Arampatzis A. Evidence of imbalanced adaptation between muscle and tendon in adolescent athletes. Scand J Med Sci Sports. 2014; 24(4):283–9; doi: 10.1111/sms.12166.
 
133.
Mersmann F, Bohm S, Schroll A, Boeth H, Duda GN, Arampatzis A. Muscle and tendon adaptation in adolescent athletes: a longitudinal study. Scand J Med Sci Sports. 2017;27(1):75–82; doi: 10.1111/sms.12631.
 
134.
Malisoux L, Francaux M, Nielens H, Theisen D. Stretch-shortening cycle exercises: an effective training paradigm to enhance power output of human single muscle fibers. J Appl Physiol. 2006; 100(3):771–9; doi: 10.1152/japplphysiol.01027. 2005.
 
135.
Malisoux L, Francaux M, Nielens H, Renard P, Lebacq J, Theisen D. Calcium sensitivity of human single muscle fibers following plyometric training. Med Sci Sports Exerc. 2006;38(11): 1901–8; doi: 10.1249/01.mss.0000232022.213 61.47.
 
136.
Chaouachi M, Granacher U, Makhlouf I, Hammami R, Behm DG, Chaouachi A. Within session sequence of balance and plyometric exercises does not affect training adaptations with youth soccer athletes. J Sports Sci Med. 2017;16(1): 125–36.
 
137.
Hammami R, Granacher U, Makhlouf I, Behm DG, Chaouachi A. Sequencing effects of balance and plyometric training on physical performance in youth soccer athletes. J Strength Cond Res. 2016;30(12):3278–89; doi: 10.1519/jsc.000000 0000001425.
 
138.
Sporri D, Ditroilo M, Rodriguez ECP, Johnston RJ, Sheehan WB, Watsford ML. The effect of water-based plyometric training on vertical stiffness and athletic performance. PLOS ONE. 2018; 13(12):11; doi: 10.1371/journal.pone.0208439.
 
139.
Moran J, Liew B, Ramirez-Campillo R, Granacher U, Negra Y, Chaabene H. The effects of plyometric jump training on lower-limb stiffness in healthy individuals: a meta-analytical comparison. J Sport Health Sci. 2023;12(2):236–245; doi: 10.1016/j.jshs.2021.05.005.
 
140.
Chimera NJ, Swanik KA, Swanik CB, Straub SJ. Effects of plyometric training on muscle-activation strategies and performance in female athletes. J Athl Train. 2004;39(1):24–31.
 
141.
Staynor JMD, Nicholas JC, Weir G, Alderson JA, Donnelly CJ. Targeting associated mechanisms of anterior cruciate ligament injury in female community-level athletes. Sports Biomech. 2017;16(4):501–13; doi: 10.1080/14763141.2016. 1246597.
 
142.
Lephart SM, Abt JP, Ferris CM, Sell TC, Nagai T, Myers JB, Irrgang JJ. Neuromuscular and biomechanical characteristic changes in high school athletes: a plyometric versus basic resistance program. Br J Sports Med. 2005;39(12):932–8; doi: 10.1136/bjsm.2005.019083.
 
143.
Grgic J, Schoenfeld BJ, Mikulic P. Effects of plyometric vs. resistance training on skeletal muscle hypertrophy: a review. J Sport Health Sci. 2021; 10(5):530–6; doi: 10.1016/j.jshs.2020.06.010.
 
144.
Aagaard P, Bojsen-Moller J, Lundbye-Jensen J. Assessment of neuroplasticity with strength training. Exerc Sport Sci Rev. 2020;48(4):151–62; doi: 10.1249/JES.0000000000000229.
 
145.
Lehnert M, Psotta R, Botek Z. The effects of highresistance and plyometric training on adolescent soccer players: a comparative study. Gazz Med Ital Arch Sci Med. 2012;171(5):567–76.
 
146.
Mendiguchia J, Martinez-Ruiz E, Morin JB, Samozino P, Edouard P, Alcaraz PE, Esparza-Ros F, Mendez-Villanueva A. Effects of hamstring-emphasized neuromuscular training on strength and sprinting mechanics in football players. Scand J Med Sci Sports. 2015;25(6):621–9; doi: 10.1111/sms.12388.
 
147.
Brown TN, RM Palmieri-Smith, McLean SG. Comparative adaptations of lower limb biomechanics during unilateral and bilateral landings after different neuromuscular-based ACL injury prevention protocols. J Strength Cond Res. 2014; 28(10):2859–71; doi: 10.1519/jsc.0000000000 000472.
 
148.
Myer GD, Ford KR, Palumbo JP, Hewett TE. Neuromuscular training improves performance and lower-extremity biomechanics in female athletes. J Strength Cond Res. 2005;19(1):51–60; doi: 10.1519/13643.1.
 
149.
Weltin E, Gollhofer A, Mornieux G. Effects of perturbation or plyometric training on core control and knee joint loading in women during lateral movements. Scand J Med Sci Sports. 2017; 27(3):299–308; doi: 10.1111/sms.12657.
 
150.
Ismail MM, Ibrahim MM, Youssef EF, El Shorbagy KM. Plyometric training versus resistive exercises after acute lateral ankle sprain. Foot Ankle Int. 2010;31(6):523–30; doi: 10.3113/FAI. 2010.0523.
 
151.
Elias A, Harris K, LaStayo P, Mizner R. Clinical efficacy of jump training augmented with body weight support after acl reconstruction: a randomized controlled trial. Am J Sports Med. 2018; 46(7):1650–60; doi: 10.1177/0363546518759052.
 
152.
Arundale AJH, Capin JJ, Zarzycki R, Smith A, Snyder-Mackler L. Functional and patient-reported outcomes improve over the course of rehabilitation: a secondary analysis of the ACLSPORTSTrial. SportsHealth. 2018;10(5):441–52; doi: 10.1177/1941738118779023.
 
153.
Taylor JB, Ford KR, Schmitz RJ, Ross SE, Ackerman TA, Shultz SJ. Sport-specific biomechanical responses to an ACL injury prevention programme: a randomised controlled trial. J Sports Sci. 2018;36(21):2492–501; doi: 10.1080/0264 0414.2018.1465723.
 
154.
Ramirez-Campillo, R., J. Sanchez-Sanchez, O. Gonzalo-Skok, A. Rodriguez-Fernandez, M. Carretero, and F.Y. Nakamura, Specific changes in young soccer player’s fitness after traditional bilateral vs. unilateral combined strength and plyometric training. Front Physiol. 2018;9:265; doi: 10.3389/fphys.2018.00265.
 
155.
Brito J, Vasconcellos F, Oliveira J, Krustrup P, Rebelo A. Short-term performance effects of three different low-volume strength-training programmes in college male soccer players. J Hum Kinet. 2014;40:121–8; doi: 10.2478/hukin-2014- 0014.
 
156.
Yanci J, Los Arcos A, Camara J, Castillo D, García A, Castagna C. Effects of horizontal plyometric training volume on soccer players’ performance. Res Sports Med. 2016;24(4):308–19; doi: 10.1080/15438627.2016.1222280.
 
157.
Huang PY, Chen WL, Lin CF, Lee HJ. Lower extremity biomechanics in athletes with ankle instability after a 6-week integrated training program. J Athl Train. 2014;49(2):163–72; doi: 10.4085/1062-6050-49.2.10.
 
158.
Chappell, J.D. and O. Limpisvasti. Effect of a neuromuscular training program on the kinetics and kinematics of jumping tasks. Am J Sports Med. 2008;36(6):1081–6; doi: 10.1177/036354 6508314425.
 
159.
Hewett TE, Lindenfeld TN, Riccobene JV, Noyes FR. The effect of neuromuscular training on the incidence of knee injury in female athletes – a prospective study. Am J Sports Med. 1999;27(6): 699–706.
 
160.
Pfeiffer RP, Shea KG, Roberts D, Grandstrand S, Bond L. Lack of effect of a knee ligament injury prevention program on the incidence of noncontact anterior cruciate ligament injury. J Bone Joint Surg Am. 2006;88(8):1769–74; doi: 10.2106/ jbjs.e.00616.
 
161.
van de Hoef PA, Brink MS, Huisstede BMA, van Smeden M, de Vries N, Goedhart EA, Gouttebarge V, Backx FJG. Does a bounding exercise program prevent hamstring injuries in adult male soccer players? – a cluster-RCT. Scand J Med Sci Sports. 2019;29(4):515–23; doi: 10.1111/sms. 13353.
 
162.
Wallenta C, Granacher U, Lesinski M, Schünemann C, Mühlbauer T, Effects of complex versus block strength training on the athletic performance of elite youth soccer players. Sportverletz Sportschaden. 2016;30(1):31–7; doi: 10.1055/ s-0041-106949.
 
163.
de Hoyo M, Gonzalo-Skok O, Sañudo B, Carrascal C, Plaza-Armas JR, Camacho-Candil F, Otero- Esquina C. Comparative effects of in-season full-back squat, resisted sprint training, and plyometric training on explosive performance in U-19 elite soccer players. J Strength Cond Res. 2016; 30(2):368–77; doi: 10.1519/jsc.000000000000 1094.
 
164.
Ribeiro J, Teixeira L, Lemos R, Teixeira AS, Moreira V, Silva P, Nakamura FY, Effects of plyometric vs optimum power training on components of physical fitness in young male soccer players. Int J Sports Physiol Perform. 2020;15(2): 222–30; doi: 10.1123/ijspp.2019-0039.
 
165.
Loturco I, Pereira LA, Kobal R, Maldonado T, Piazzi AF, Bottino A, Kitamura K, Cal Abad CC, M. de Arruda, Nakamura FY. Improving sprint performance in soccer: effectiveness of jump squat and Olympic push press exercises. PLOS ONE. 2016;11(4):e0153958; doi: 10.1371/journal. pone.0153958.
 
166.
Impellizzeri FM, Rampinini E, Castagna C, Martino F, Fiorini S, Wisloff U. Effect of plyometric training on sand versus grass on muscle soreness and jumping and sprinting ability in soccer players. Br J Sports Med. 2008;42(1):42– 6; 10.1136/bjsm.2007.038497.
 
167.
Gil S, Barroso R, Crivoi do Carmo E, Loturco I, Kobal R, Tricoli V, Ugrinowitsch C, H. Roschel. Effects of resisted sprint training on sprintingability and change of direction speed in professional soccer players. J Sports Sci. 2018;36(17): 1923–9; doi: 10.1080/02640414.2018.1426346.
 
168.
Rodríguez-Rosell D, Torres-Torrelo J, Franco- Márquez F, González-Suárez JM, González-Badillo JJ. Effects of light-load maximal lifting velocity weight training vs. combined weight training and plyometrics on sprint, vertical jump and strength performance in adult soccer players. J Sci Med Sport. 2017;20(7):695–9; doi: 10.1016/j.jsams.2016.11.010.
 
169.
Faude O, Roth R, Giovine DD, Zahner L, Donath L. Combined strength and power training in high-level amateur football during the competitive season: a randomised-controlled trial. J Sports Sci. 2013;31(13):1460–7; doi: 10.1080/ 02640414.2013.796065.
 
170.
Nakamura D, Suzuki T, Yasumatsu M, Akimoto T, Moderate running and plyometric training during off-season did not show a significant difference on soccer-related high-intensity performances compared with no-training controls. J Strength Cond Res. 2012;26(12):3392–7; doi: 10.1519/JSC.0b013e3182474356.
 
171.
Kobal R, Loturco I, Barroso R, Gil S, Cuniyochi RR, Ugrinowitsch C, Roschel H, Tricoli V. Effects of different combinations of strength, power, and plyometric training on the physical performance of elite young soccer players. J Strength Cond Res. 2017;31(6):1468–76; doi: 10.1519/JSC.000000 0000001609.
 
172.
Hammami M, Negra Y, Aouadi R, Shephard RJ, Chelly MS. Effects of an in-season plyometric training program on repeated change of direction and sprint performance in the junior soccer player. J Strength Cond Res. 2016;30(12):3312– 20; doi: 10.1519/jsc.0000000000001470.
 
173.
Söhnlein Q, Müller E, Stöggl TL. The effect of 16-week plyometric training on explosive actions in early to mid-puberty elite soccer players. J Strength Cond Res. 2014;28(8):2105–14; doi: 10.1519/JSC.0000000000000387.
 
174.
Ramirez-Campillo R, Henriquez-Olguin C, Burgos C, Andrade DC, Zapata D, Martinez C, Alvarez C, Baez EI, Castro-Sepulveda M, Penailillo L, Izquierdo M. Effect of progressive volume-based overload during plyometric training on explosive and endurance performance in young soccer players. J Strength Cond Res. 2015;29(7):1884– 93; doi: 10.1519/JSC.0000000000000836.
 
175.
Ramirez-Campillo R, Gallardo F, Henriquez- Olguin C, Meylan CM, Martinez C, Alvarez C, Caniuqueo A, Cadore EL, Izquierdo M. Effect of vertical, horizontal, and combined plyometric training on explosive, balance, and endurance performance of young soccer players. J Strength Cond Res. 2015;29(7):1784–95; doi: 10.1519/ JSC.0000000000000827.
 
176.
Ramirez-Campillo R, Alvarez C, García-Pinillos F, Sanchez-Sanchez J, Yanci J, Castillo D, Loturco I, Chaabene H, Moran J, Izquierdo M. Optimal reactive strength index: is it an accurate variable to optimize plyometric training effects on measures of physical fitness in young soccer players?. J Strength Cond Res. 2018;32(4):885–93.
 
177.
Ramirez-Campillo R, Alvarez C, Gentil P, Loturco I, Sanchez-Sanchez J, Izquierdo M, Moran J, Nakamura FY, Chaabene H, Granacher U. Sequencing effects of plyometric training applied before or after regular soccer training on measures of physical fitness in young players. J Strength Cond Res. 2020;34(7):1959–66; doi: 10.1519/JSC.0000000000002525.
 
178.
Franco-Márquez F, Rodríguez-Rosell D, González- Suárez JM, Pareja-Blanco F, Mora-Custodio R, Yañez-García JM, González-Badillo JJ. Effects of combined resistance training and plyometrics on physical performance in young soccer players. Int J Sports Med. 2015;36(11):906– 14; doi: 10.1055/s-0035-1548890.
 
179.
Marques MC, Pereira A, Reis IG, van den Tillaar R. Does an in-season 6-week combined sprint and jump training program improve strengthspeed abilities and kicking performance in young soccer players?. J Hum Kinet. 2013;39:157–66; doi: 10.2478/hukin-2013-0078.
 
180.
Granacher U, Prieske O, Majewski M, Büsch D, Muehlbauer T. The role of instability with plyometric training in sub-elite adolescent soccer players. Int J Sports Med. 2015;36(5):386–94; doi: 10.1055/s-0034-1395519.
 
181.
Bouguezzi R, Chaabene H, Negra Y, Ramirez- Campillo R, Jlalia Z, Mkaouer B, Hachana Y. Effects of different plyometric training frequency on measures of athletic performance in prepuberal male soccer players. J Strength Cond Res. 2020;34(6):1609–17; doi: 10.1519/JSC.00 00000000002486.
 
182.
Buchheit M, Mendez-Villanueva A, Delhomel G, Brughelli M, Ahmaidi S. Improving repeated sprint ability in young elite soccer players: repeated shuttle sprints vs. explosive strength training. J Strength Cond Res. 2010;24(10):2715– 22; doi: 10.1519/JSC.0b013e3181bf0223.
 
183.
Ramirez-Campillo R, Andrade DC, Alvarez C, Henriquez-Olguin C, Martinez C, Baez-Sanmartin E, Silva-Urra J, Burgos C, Izquierdo M. The effects of interset rest on adaptation to 7 weeks of explosive training in young soccer players. J Sports Sci Med. 2014;13(2):287–96.
 
184.
Ramirez-Campillo R, Meylan C, Alvarez C, Henriquez- Olguin C, Martinez C, Canas-Jamett R, Andrade DC, Izquierdo M. Effects of in-season low-volume high-intensity plyometric training on explosive actions and endurance of young soccer players. J Strength Cond Res. 2014;28(5): 1335–42; doi: 10.1519/JSC.0000000000000284.
 
185.
Thomas K, French D, Hayes PR. The effect of two plyometric training techniques on muscular power and agility in youth soccer players. J Strength Cond Res. 2009;23(1):332–5; doi: 10.1519/JSC.0b013e318183a01a.
 
186.
Kobal R, Pereira LA, Zanetti V, Ramirez-Campillo R, Loturco I. Effects of unloaded vs. loaded plyometrics on speed and power performance of elite young soccer players. Front Physiol. 2017; 8:742; doi: 10.3389/fphys.2017.00742.
 
187.
Borges JH, Conceição MS, Vechin FC, Pascoal EHF, Silva RP, Borin JP. The effects of resisted sprint vs. plyometric training on sprint performance and repeated sprint ability during the final weeks of the youth soccer season. Sci Sports. 2016;31(4):101–5; doi: 10.1016/j.scispo.2015.10. 004.
 
188.
Tous-Fajardo J, Gonzalo-Skok O, Arjol-Serrano JL, Tesch P, Enhancing change-of-direction speed in soccer players by functional inertial eccentric overload and vibration training. Int J Sports Physiol Perform. 2016;11(1):66–73; doi: 10.1123/ijspp.2015-0010.
 
189.
Beato M, Bianchi M, Coratella G, Merlini M, Drust B. Effects of plyometric and directional training on speed and jump performance in elite youth soccer players. J Strength Cond Res. 2018; 32(2):289-296; doi: 10.1519/JSC.0000000000 002371.
 
190.
Castagna C, D’Ottavio S, Abt G. Activity profile of young soccer players during actual match play. J Strength Cond Res. 2003;17(4):775–80; doi: 10.1519/1533-4287(2003)017<0775:apoy sp>2.0.co;2.
 
191.
Byrne PJ, Moody JA, Cooper SM, Farrell E, Kinsella S. Short-term effects of “composite” training on strength, jump, and sprint performance in hurling players. J Strength Cond Res. 2022;36(8): 2253–61; doi: 10.1519/jsc.0000000000003820.
 
192.
Váczi M, Tollár J, Meszler B, Juhász I, Karsai I. Short-term high intensity plyometric training program improves strength, power and agility in male soccer players. J Hum Kin. 2013;36(1):17– 26; doi: 10.2478/hukin-2013-0002.
 
193.
Ramirez-Campillo R, Burgos CH, Henriquez- Olguin C, DC Andrade, Martinez C, Alvarez C, Castro-Sepulveda M, Marques MC, Izquierdo M. Effect of unilateral, bilateral, and combined plyometric training on explosive and endurance performance of young soccer players. J Strength Cond Res. 2015;29(5):1317–28; doi: 10.1519/ JSC.0000000000000762.
 
194.
Makhlouf I, Chaouachi A, Chaouachi M, Ben Othman A, Granacher U, Behm DG. Combination of agility and plyometric training provides similar training benefits as combined balance and plyometric training in young soccer players. Front Physiol. 2018;9:1611; doi: 10.3389/fphys. 2018.01611.
 
195.
Negra Y, Chaabene H, Fernandez-Fernandez J, Sammoud S, Bouguezzi R, Prieske O, Granacher U. Short-term plyometric jump training improves repeated-sprint ability in prepuberal male soccer players. J Strength Cond Res. 2020;34(11):3241– 9; doi: 10.1519/jsc.0000000000002703.
 
196.
Assuncao AR, Bottaro M, Cardoso EA, Dantas da Silva DP, Ferraz M, Vieira CA, Gentil P. Effects of a low-volume plyometric training in anaerobic performance of adolescent athletes. J Sports Med Phys Fitness. 2018;58(5):570–5; doi: 10.23736/S0022-4707.17.07173-0.
 
197.
Ramirez-Campillo R, Meylan CM, Alvarez-Lepin C, Henriquez-Olguin C, MartinezC, Andrade DC, Castro-Sepulveda M, Burgos C, Baez EI, Izquierdo M. The effects of interday rest on adaptation to 6 weeks of plyometric training in young soccer players. J Strength Cond Res. 2015; 29(4):972–9; doi: 10.1519/JSC.000000000000 0283.
 
198.
Sáez de Villarreal E, Suarez-Arrones L, Requena B, Haff GG, Ferrete C. Effects of plyometric and sprint training on physical and technical skill performance in adolescent soccer players. J Strength Cond Res. 2015;29(7):1894–903; doi: 10.1519/JSC.0000000000000838.
 
199.
Asadi A, Ramirez-Campillo R, Arazi H, Saez de Villarreal E. The effects of maturation on jumping ability and sprint adaptations to plyometric training in youth soccer players. J Sports Sci. 2018;36(21):2405–11; doi: 10.1080/02640414. 2018.1459151.
 
200.
Negra Y, Chaabene H, Sammoud S, Prieske O, Moran J, Ramirez-Campillo R, Nejmaoui A, Granacher U. The increased effectiveness of loaded versus unloaded plyometric jump training in improving muscle power, speed, change of direction, and kicking-distance performance in prepubertal male soccer players. Int J Sports Physiol Perform. 2020;15(2):189–95; doi: 10.1123/ijspp. 2018-0866.
 
201.
Rosas F, Ramirez-Campillo R, Diaz D, Abad- Colil F, Martinez-Salazar C, Caniuqueo A, Canas- Jamet R, Loturco I, Nakamura FY, McKenzie C, Gonzalez-Rivera J, Sanchez-Sanchez J, Izquierdo M. Jump training in youth soccer players: effects of haltere type handheld loading. Int J Sports Med. 2016;37(13):1060–5; doi: 10.1055/ s-0042-111046.
 
202.
Ramirez-Campillo R, Alvarez C, Garcia-Pinillos F, Garcia-Ramos A, Loturco I, Chaabene H, Granacher U. Effects of combined surfaces vs. single-surface plyometric training on soccer players’ physical fitness. J Strength Cond Res. 2020; 34(9):2644–53; doi: 10.1519/JSC.0000000000 002929.
 
203.
Trecroci A, Cavaggioni L, Caccia R, Alberti G. Jump rope training: balance and motor coordination in preadolescent soccer players. J Sports Sci Med. 2015;14(4):792–8.
 
204.
Negra Y, Chaabene H, Sammoud S, Bouguezzi R, Mkaouer B, Hachana Y, Granacher U. Effects of plyometric training on components of physical fitness in prepuberal male soccer athletes: the role of surface instability. J Strength Cond Res. 2017;31(12):3295–304; doi: 10.1519/JSC.0000 000000002262.
 
205.
Rodríguez-Rosell D, Franco-Márquez F, Pareja- Blanco F, Mora-Custodio R, Yáñez-García JM, González-Suárez JM, González-Badillo JJ. Effects of 6 weeks resistance training combined with plyometric and speed exercises on physical performance of pre-peak-height-velocity soccer players. Int J Sports Physiol Perform. 2016;11(2): 240–6; doi: 10.1123/ijspp.2015-0176.
 
206.
Ramirez-Campillo R, Alvarez C, Garcia-Pinillos F, Gentil P, Moran J, Pereira LA, Loturco I. Effects of plyometric training on physical performance of young male soccer players: potential effects of different drop jump heights. Pediatr Exerc Sci. 2019;31(3):306–13; doi: 10.1123/pes. 2018-0207.
 
207.
Sanchez-Sanchez J, Rodriguez-Fernandez A, Granacher U, Afonso J, Ramirez-Campillo R. Plyometric jump training effects on maximal strength in soccer players: a systematic review with meta-analysis of randomized-controlled studies. Sports Med Open. 2024;10(1):52; doi: 10.1186/s40798-024-00720-w.
 
208.
Abad-Colil F, Ramirez-Campillo R, Alvarez C, Castro M, Silva S, Izquierdo M. Effects of betahydroxy- beta-methylbutyrate supplementation on physical performance of young players during an intensified soccer-training period: a short report. Hum Mov. 2017;2017(5):91–6; doi: 10.5114/ hm.2017.73625.
 
209.
Neves da Silva VF, Aguiar SDS, Sousa CV, Sotero RDC, Filho JMS, Oliveira I, Mota MR, Simoes HG, Sales MM. Effects of short-term plyometric training on physical fitness parameters in female futsal athletes. J Phys Ther Sci. 2017; 29(5):783–8; doi: 10.1589/jpts.29.783.
 
210.
Makaruk H, Winchester JB, Sadowski J, Czaplicki A, Sacewicz T. Effects of unilateral and bilateral plyometric training on power and jumping ability in women. J Strength Cond Res. 2011; 25(12):3311–8; doi: 10.1519/JSC.0b013e31821 5fa33.
 
211.
Wilson GJ, Murphy AJ. Strength diagnosis: the use of test data to determine specific strength training. J Sports Sci, 1996;14(2):167–73; doi: 10.1080/02640419608727698.
 
212.
Fonseca RT, Nunes RDAM, Castro JBPD, Lima VP, Silva SG, Dantas EHM, Vale RGDS. The effect of aquatic and land plyometric training on the vertical jump and delayed onset muscle soreness in Brazilian soccer players. Hum Mov. 2017; 18(5):63–70; doi: 10.1515/humo-2017-0041.
 
213.
Marginson V, Rowlands AV, Gleeson NP, Eston RG. Comparison of the symptoms of exerciseinduced muscle damage after an initial and repeated bout of plyometric exercise in men and boys. J Appl Physiol. 2005;99(3):1174–81; doi: 10.1152/japplphysiol.01193.2004.
 
214.
Ansdell P, Thomas K, Hicks KM, Hunter SK, Howatson G, Goodall S. Physiological sex differences affect the integrative response to exercise: acute and chronic implications. Exp Physiol. 2020;105(12):2007–21; doi: 10.1113/EP088548.
 
215.
FIFA, FIFA Women’s Development Programme. 2020. Available from: https://inside.fifa.com/ media-releases/fifa-launches-programme-tohelp- member-associations-further-developwomen- s-foot (accessed 03.05.2021).
 
216.
Okholm Kryger K, Wang A, Mehta R, Impellizzeri FM, Massey A, McCall A. Research on women’s football: a scoping review. Sci Med Football. 2022;6(5):549–58; doi: 10.1080/24733938. 2020.1868560.
 
217.
Corepal R, Zhang JY, Grover S, Hubball H, Ashe MC. Walking soccer: a systematic review of a modified sport. Scand J Med Sci Sports. 2020; 30(12):2282–90; doi: 10.1111/sms.13772.
 
218.
Moran J, Ramirez-Campillo R, Granacher U. Effects of jumping exercise on muscular power in older adults: a meta-analysis. Sports Med. 2018; 48(12):2843–57; doi: 10.1007/s40279-018-1002-5.
 
219.
Moran J, Clark CCT, Ramirez-Campillo R, Davies MJ, Drury B. A meta-analysis of plyometric training in female youth: its efficacy and shortcomings in the literature. J Strength Cond Res. 2019; 33(7):1996–2008; doi: 10.1519/JSC.0000000 000002768.
 
220.
Moran J, Paxton K Jones, B, Granacher U, Sandercock GR, Hope E, Ramirez-Campillo R. Variable long-term developmental trajectories of short sprint speed and jumping height in English Premier League academy soccer players: an applied case study. J Sports Sci. 2020;38(22):2525–31; doi: 10.1080/02640414.2020.1792689.
 
221.
Moran J, Sandercock GR, Ramirez-Campillo R, Meylan C, Collison J, Parry DA. A meta-analysis of maturation-related variation in adolescent boy athletes’ adaptations to short-term resistance training. J Sports Sci. 2017;35(11):1041–51; doi: 10.1080/02640414.2016.1209306.
 
222.
Ramirez-Campillo R, Sortwell A, Moran J, Afonso J, Clemente FM, Lloyd RS, Oliver JL, Pedley J, Granacher U. Plyometric-jump training effects on physical fitness and sport-specific performance according to maturity: a systematic review with meta-analysis. Sports Med Open. 2023; 9(1):23; doi: 10.1186/s40798-023-00568-6.
 
223.
Bangsbo J. The physiology of soccer – with special reference to intense intermittent exercise. Acta Physiol Scand Suppl. 1994;619:1–155.
 
224.
Gouveia ÉR, França C, Henriques R, Santos F, Mâncio R, Przednowek K, Sarmento H. Variations in locomotor intensities across soccer match halves concerning player sectorial positions. Hum Mov. 2024;25(2):105–13; doi: 10.5114/ hm/187068.
 
225.
Sáez de Villarreal E, Kellis E, Kraemer WJ, Izquierdo M. Determining variables of plyometric training for improving vertical jump height performance: a meta-analysis. J Strength Cond Res. 2009;23(2):495–506; doi: 10.1519/JSC.0b013e 318196b7c6.
 
226.
Sáez de Villarreal E, Requena B, Cronin JB. The effects of plyometric training on sprint performance: a meta-analysis. J Strength Cond Res. 2012;26(2):575–84.
 
227.
Sáez de Villarreal E, Requena B, Newton RU. Does plyometric training improve strength performance? A meta-analysis. J Sci Med Sport. 2010;13(5):513–22; doi: 10.1016/j.jsams.2009. 08.005.
 
228.
Yanci J, Castillo D, Iturricastillo A, Ayarra R, Nakamura FY. Effects of two different volumeequated weekly distributed short-term plyometric training programs on futsal players’ physical performance. J Strength Cond Res. 2017;31(7): 1787–94; doi: 10.1519/JSC.0000000000001644.
 
229.
Beato M, Coratella G, Schena F. Brief review of the state of art in futsal. J Sports Med Phys Fitness. 2016;56(4):428-32.
 
230.
Ramirez-Campillo R, Alvarez C, Gentil P, Moran J, Garcia-Pinillos F, Alonso-Martinez AM, Izquierdo M. Inter-individual variability in responses to 7 weeks of plyometric jump training in male youth soccer players. Front Physiol. 2018;9:1156; doi: 10.3389/fphys.2018.01156.
 
231.
ACSM, American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc. 2009;41(3):687–708; doi: 10.1249/MSS.0b 013e3181915670.
 
232.
Meylan C, Cronin J, Oliver J, Hopkins W, Contreras B. The effect of maturation on adaptations to strength training and detraining in 11–15-yearolds. Scand J Med Sci Sports. 2014;24(3):156– 64; doi: 10.1111/sms.12128.
 
233.
Hewett TE, Ford KR, Hoogenboom BJ, Myer GD. Understanding and preventing acl injuries: current biomechanical and epidemiologic considerations – update 2010. North Am J Sports Phys Ther. 2010;5(4):234–51.
 
234.
Bramer WM, Rethlefsen ML, Kleijnen J, Franco OH. Optimal database combinations for literature searches in systematic reviews: a prospective exploratory study. Syst Rev. 2017;6(1):245; doi: 10.1186/s13643-017-0644-y.
 
eISSN:1899-1955
Journals System - logo
Scroll to top