ORIGINAL PAPER
Isometric knee torque, quadriceps-hamstrings ratio, and jumping parameters in Brazilian soccer players of different age categories
 
More details
Hide details
1
Musculoskeletal Research Group, Department of Physical Therapy, Federal University of Juiz de Fora, Governador Valadares, Brazil
 
2
Research Group for Development of Football and Futsal / Physical Effort Laboratory, Sports Centre, Federal University of Santa Catarina, Florianópolis, Brazil
 
3
Meazure Sport Sciences, São Paulo, Brazil
 
4
Associate Graduate Program in Physical Education, Federal University of Paraíba, João Pessoa, Brazil
 
 
Submission date: 2020-09-29
 
 
Acceptance date: 2021-02-08
 
 
Publication date: 2021-12-10
 
 
Hum Mov. 2022;23(3):81-91
 
KEYWORDS
TOPICS
ABSTRACT
Purpose:
This study assessed the isometric torque, hamstring-to-quadriceps ratio, and jump performance among three age groups of soccer players.

Methods:
67 male players were divided by chronological age into the under-17 (U17: n = 29), under-20 (U20: n = 22), and above-20-year (PRO: n = 16) groups. They performed countermovement (CMJ) and squat (SJ) jumps. Also, maximal isometric contractions during knee flexion and extension for right (R-TOR) and left limb (L-TOR) torque were assessed. Hamstrings-quadriceps (H:Q) and CMJ:SJ ratios were determined.

Results:
Compared with U17 and U20, PRO showed higher CMJ (Δ = 20% and 14%; both p < 0.01) and SJ (Δ = 19% and 13%; p < 0.01 and p = 0.02, respectively), and higher absolute R-TOR and L-TOR during knee extension (Δ = 40% and 58%; both p < 0.01). PRO exhibited higher absolute L-TOR and R-TOR during knee flexion than U17 (Δ = 22% and 26%; p = 0.04 and p < 0.01, respectively). Between-group differences were not detected in normalized torque, except for knee extension R-TOR (PRO > U17; p = 0.04). Greater differences for quadriceps absolute torque (effect size: 1.37–1.46) were observed in the hamstrings (effect size: 0.30–0.92) between PRO and U17. No differences were found for any H:Q torque ratio, but moderate effect sizes (0.71–0.75) were verified between PRO and the other groups. No differences were found for CMJ:SJ ratio.

Conclusions:
PRO players are more powerful than U17 and U20. Differences in strength level between PRO and U17/U20 are muscle-dependent. The larger strength development of quadriceps over hamstrings can result in lower isometric H:Q torque ratio for PRO.

 
REFERENCES (48)
1.
Bloomfield J, Polman R, O’Donoghue P. Deceleration movements performed during FA Premier League soccer matches. J Sports Sci Med. 2007;6(Suppl. 10):6.
 
2.
Castagna C, D’Ottavio S, Abt G. Activity profile of young soccer players during actual match play. J Strength Cond Res. 2003;17(4):775–780; doi: 10.1519/1533-4287(2003)017<0775:apoysp>2.0.co;2.
 
3.
Barnes C, Archer DT, Hogg B, Bush M, Bradley PS. The evolution of physical and technical performance parameters in the English Premier League. Int J Sports Med. 2014;35(13):1095–1100; doi: 10.1055/s-0034-1375695.
 
4.
Wisløff U, Castagna C, Helgerud J, Jones R, Hoff J. Strong correlation of maximal squat strength with sprint performance and vertical jump height in elite soccer players. Br J Sports Med. 2004;38(3):285–288; doi: 10.1136/bjsm.2002.002071.
 
5.
Thorlund JB, Aagaard P, Madsen K. Rapid muscle force capacity changes after soccer match play. Int J Sports Med. 2009;30(4):273–278; doi: 10.1055/s-0028-1104587.
 
6.
Rampinini E, Bosio A, Ferraresi I, Petruolo A, Morelli A, Sassi A. Match-related fatigue in soccer players. Med Sci Sports Exerc. 2011;43(11):2161–2170; doi: 10.1249/MSS.0b013e31821e9c5c.
 
7.
Oliver J, Armstrong N, Williams C. Changes in jump performance and muscle activity following soccer-specific exercise. J Sports Sci. 2008;26(2):141–148; doi: 10.1080/02640410701352018.
 
8.
Mujika I, Spencer M, Santisteban J, Goiriena JJ, Bishop D. Age-related differences in repeated-sprint ability in highly trained youth football players. J Sports Sci. 2009;27(14):1581–1590; doi: 10.1080/02640410903350281.
 
9.
Kobal R, Loturco I, Gil S, Cal Abad CC, Cuniyochi R, Barroso R, et al. Comparison of physical performance among Brazilian elite soccer players of different agecategories. J Sports Med Phys Fitness. 2016;56(4):376–382.
 
10.
Valente-dos-Santos J, Coelho-e-Silva MJ, Martins RA, Figueiredo AJ, Cyrino ES, Sherar LB, et al. Modelling developmental changes in repeated-sprint ability by chronological and skeletal ages in young soccer players. Int J Sports Med. 2012;33(10):773–780; doi: 10.1055/s-0032-1308996.
 
11.
Deprez D, Valente-Dos-Santos J, Coelho-e-Silva MJ, Lenoir M, Philippaerts R, Vaeyens R. Longitudinal development of explosive leg power from childhood to adulthood in soccer players. Int J Sports Med. 2015;36(8):672–679; doi: 10.1055/s-0034-1398577.
 
12.
Loturco I, Jeffreys I, Cal Abad CC, Kobal R, Zanetti V, Pereira LA, et al. Change-of-direction, speed and jump performance in soccer players: a comparison across different age-categories. J Sports Sci. 2020;38(11–12):1279–1285; doi: 10.1080/02640414.2019.1574276.
 
13.
Forbes H, Bullers A, Lovell A, McNaughton LR, Polman RC, Siegler JC. Relative torque profiles of elite male youth footballers: effects of age and pubertal development. Int J Sports Med. 2009;30(8):592–597; doi: 10.1055/s-0029-1202817.
 
14.
Kellis S, Gerodimos V, Kellis E, Manou V. Bilateral isokinetic concentric and eccentric strength profiles of the knee extensors and flexors in young soccer players. Isokinet Exerc Sci. 2001;9(1):31–39; doi: 10.3233/ies-2001-0061.
 
15.
Williams CA, Oliver JL, Faulkner J. Seasonal monitoring of sprint and jump performance in a soccer youth academy. Int J Sports Physiol Perform. 2011;6(2):264–275; doi: 10.1123/ijspp.6.2.264.
 
16.
Radnor JM, Oliver JL, Waugh CM, Myer GD, Moore IS, Lloyd RS. The influence of growth and maturation on stretch-shortening cycle function in youth. Sports Med. 2018;48(1):57–71; doi: 10.1007/s40279-017-0785-0.
 
17.
Baroni BM, Ruas CV, Ribeiro-Alvares JB, Pinto RS. Hamstring-to-quadriceps torque ratios of professional male soccer players: a systematic review. J Strength Cond Res. 2020;34(1):281–293; doi: 10.1519/JSC.0000000000002609.
 
18.
Carvalho HM, Coelho-e-Silva M, Valente-dos-Santos J, Gonçalves RS, Philippaerts R, Malina R. Scaling lowerlimb isokinetic strength for biological maturation and body size in adolescent basketball players. Eur J Appl Physiol. 2012;112(8):2881–2889; doi: 10.1007/s00421-011-2259-7.
 
19.
Loturco I, Pereira LA, Kobal R, Kitamura K, Cal Abad CC, Marques G, et al. Validity and usability of a new system for measuring and monitoring variations in vertical jump performance. J Strength Cond Res. 2017;31(9):2579–2585; doi: 10.1519/JSC.0000000000002086.
 
20.
McHugh MP, Clifford T, Abbott W, Kwiecien SY, Kremenic IJ, DeVita JJ, et al. Countermovement jump recovery in professional soccer players using an inertial sensor. Int J Sports Physiol Perform. 2019;14(1):9–15; doi: 10.1123/ijspp.2018-0131.
 
21.
Toonstra J, Mattacola CG. Test-retest reliability and validity of isometric knee-flexion and -extension measurement using 3 methods of assessing muscle strength. J Sport Rehabil. 2013;22(1); doi: 10.1123/jsr.2013.tr7.
 
22.
Reilly T, Bangsbo J, Franks A. Anthropometric and physiological predispositions for elite soccer. J Sports Sci. 2000;18(9):669–683; doi: 10.1080/02640410050120050.
 
23.
Rebelo A, Brito J, Maia J, Coelho-e-Silva MJ, Figueiredo AJ, Bangsbo J, et al. Anthropometric characteristics, physical fitness and technical performance of under-19 soccer players by competitive level and field position. Int J Sports Med. 2013;34(4):312–317; doi: 10.1055/s-0032-1323729.
 
24.
Ferioli D, Bosio A, La Torre A, Carlomagno D, Connolly DR, Rampinini E. Different training loads partially influence physiological responses to the preparation period in basketball. J Strength Cond Res. 2018;32(3):790–797; doi: 10.1519/JSC.0000000000001823.
 
25.
Loturco I, Jeffreys I, Kobal R, Cal Abad CC, Ramirez-Campillo R, Zanetti V, et al. Acceleration and speed performance of Brazilian elite soccer players of different age-categories. J Hum Kinet. 2018;64:205–218; doi: 10.1515/hukin-2017-0195.
 
26.
Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):3–13; doi: 10.1249/MSS.0b013e31818cb278.
 
27.
Loturco I, Kobal R, Gil S, Pivetti B, Kitamura K, Pereira LA, et al. Differences in loaded and unloaded vertical jumping ability and sprinting performance between Brazilian elite under-20 and senior soccer players. Am J Sport Sci. 2014;2(6–1):8–13; doi: 10.11648/j.ajss.s.2014020601.12.
 
28.
Mandic R, Jakovljevic S, Jaric S. Effects of countermovement depth on kinematic and kinetic patterns of maximum vertical jumps. J Electromyogr Kinesiol. 2015;25(2):265–272; doi: 10.1016/j.jelekin.2014.11.001.
 
29.
Glaister M. Multiple sprint work: physiological responses, mechanisms of fatigue and the influence of aerobic fitness. Sports Med. 2005;35(9):757–777; doi: 10.2165/00007256-200535090-00003.
 
30.
Meerits T, Bacchieri S, Pääsuke M, Ereline J, Cicchella A, Gapeyeva H. Acute effect of static and dynamic stretching on tone and elasticity of hamstring muscles and on vertical jump performance in track-and-field athletes. Acta Kinesiol Univ Tartu. 2014;20:48–59; doi: 10.12697/akut.2014.20.05.
 
31.
Oliveira ML, Ferreira IC, Ferreira KR, Silveira-Nunes G, Barbosa MA, Barbosa AC. Validity of an inexpensive hanging scale during isometric shoulder movements. J Sport Rehabil. 2020;29(8):1218–1221; doi: 10.1123/jsr.2019-0255.
 
32.
Deprez D, Valente-Dos-Santos J, Coelho-e-Silva MJ, Lenoir M, Philippaerts R, Vaeyens R. Multilevel development models of explosive leg power in high-level soccer players. Med Sci Sports Exerc. 2015;47(7):1408–1415; doi: 10.1249/MSS.0000000000000541.
 
33.
Lehance C, Binet J, Bury T, Croisier JL. Muscular strength, functional performances and injury risk in professional and junior elite soccer players. Scand J Med Sci Sports. 2009;19(2):243–251; doi: 10.1111/j.1600-0838.2008.00780.x.
 
34.
Mujika I, Santisteban J, Impellizzeri FM, Castagna C. Fitness determinants of success in men’s and women’s football. J Sports Sci. 2009;27(2):107–114; doi: 10.1080/02640410802428071.
 
35.
Harley JA, Hind K, O’Hara JP. Three-compartment body composition changes in elite rugby league players during a super league season, measured by dual-energy X-ray absorptiometry. J Strength Cond Res. 2011;25(4):1024–1029; doi: 10.1519/JSC.0b013e3181cc21fb.
 
36.
Deprez D, Vaeyens R, Coutts AJ, Lenoir M, Philippaerts R. Relative age effect and Yo-Yo IR1 in youth soccer. Int J Sports Med. 2012;33(12):987–993; doi: 10.1055/s-0032-1311654.
 
37.
McGuigan MR, Doyle TLA, Newton M, Edwards DJ, Nimphius S, Newton RU. Eccentric utilization ratio: effect of sport and phase of training. J Strength Cond Res. 2006;20(4):992–995; doi: 10.1519/R-19165.1.
 
38.
Impellizzeri FM, Rampinini E, Castagna C, Martino F, Fiorini S, Wisloff U. Effect of plyometric training on sand versus grass on muscle soreness and jumping and sprinting ability in soccer players. Br J Sports Med. 2008;42(1):42–46; doi: 10.1136/bjsm.2007.038497.
 
39.
Ramirez-Campillo R, Sanchez-Sanchez J, Romero-Moraleda B, Yanci J, García-Hermoso A, Clemente FM. Effects of plyometric jump training in female soccer player’s vertical jump height: a systematic review with meta-analysis. J Sports Sci. 2020;38(13):1475–1487; doi: 10.1080/02640414.2020.1745503.
 
40.
Duarte JP, Valente-Dos-Santos J, Coelho-e-Silva MJ, Malina RM, Deprez D, Philippaerts R, et al. Developmental changes in isometric strength: longitudinal study in adolescent soccer players. Int J Sports Med. 2018;39(9):688–695; doi: 10.1055/s-0044-100389.
 
41.
Loturco I, Pereira LA, Freitas TT, Alcaraz PE, Zanetti V, Bishop C, et al. Maximum acceleration performance of professional soccer players in linear sprints: is there a direct connection with change-of-direction ability? PLoS One. 2019;14(5):e0216806; doi: 10.1371/journal.pone.0216806.
 
42.
Cometti G, Maffiuletti NA, Pousson M, Chatard JC, Maffulli N. Isokinetic strength and anaerobic power of elite, subelite and amateur French soccer players. Int J Sports Med. 2001;22(1):45–51; doi: 10.1055/s-2001-11331.
 
43.
Zebis MK, Andersen LL, Ellingsgaard H, Aagaard P. Rapid hamstring/quadriceps force capacity in male vs. female elite soccer players. J Strength Cond Res. 2011;25(7):1989–1993; doi: 10.1519/JSC.0b013e3181e501a6.
 
44.
Greco CC, Da Silva WL, Camarda SRA, Denadai BS. Rapid hamstrings/quadriceps strength capacity in professional soccer players with different conventional isokinetic muscle strength ratios. J Sport Sci Med. 2012;11(3):418–422.
 
45.
Peek K, Gatherer D, Bennett KJM, Fransen J, Watsford M. Muscle strength characteristics of the hamstrings and quadriceps in players from a high-level youth football (soccer) academy. Res Sports Med. 2018;26(3):276–288; doi: 10.1080/15438627.2018.1447475.
 
46.
Bogdanis GC, Kalapotharakos VI. Knee extension strength and hamstrings-to-quadriceps imbalances in elite soccer players. Int J Sports Med. 2015;37(2):119–124; doi: 10.1055/s-0035-1559686.
 
47.
Gür H, Akova B, Pündük Z, Küçükoglu S. Effects of age on the reciprocal peak torque ratios during knee muscle contractions in elite soccer players. Scand J Med Sci Sports. 1999;9(2):81–87; doi: 10.1111/j.1600-0838.1999.tb00213.x.
 
48.
Lee JWY, Mok K-M, Chan HCK, Yung PSH, Chan K-M. Eccentric hamstring strength deficit and poor hamstring-to-quadriceps ratio are risk factors for hamstring strain injury in football: a prospective study of 146 professional players. J Sci Med Sport. 2018;21(8):789–793; doi: 10.1016/j.jsams.2017.11.017.
 
eISSN:1899-1955
Journals System - logo
Scroll to top