ORIGINAL PAPER
Effect of repeated sprint exercises on cardiac autonomic recovery in adolescent and adult males: an experimental trial
 
More details
Hide details
1
Health Sciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
 
2
Department of Physical Education, Federal University of Rio Grande do Norte, Natal, Brazil
 
3
Escola Superior Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Viana do Castelo, Portugal
 
4
Innovation Center, Viana do Castelo, Portugal
 
5
Department of Physical Education, Federal University of Sergipe, São Cristovão, Brazil
 
 
Submission date: 2024-07-02
 
 
Acceptance date: 2024-12-27
 
 
Publication date: 2025-03-31
 
 
Corresponding author
Paulo Francisco de Almeida-Neto   

Health Sciences Center, Federal University of Rio Grande do Norte, CCS-UFRN, Natal, 59012-570, RN, Brazil
 
 
Hum Mov. 2025;26(1):125-141
 
KEYWORDS
TOPICS
ABSTRACT
Purpose:
Repeated sprint exercises (RSEs) are widely used to improve physical fitness; however, their specific effects on cardiac autonomic recovery (CAR) in individuals of different ages and biological maturation (BM) stages still lack investigation. Our objective was to analyse the effect of RSE on CAR, assessed by the heart rate (HR) recovery index and the time and frequency domains of heart rate variability (HRV) in male adolescents and adults.

Methods:
Non-randomised experimental study. Thirty-eight individuals classified as having a high level of physical activity (males, 22 adolescents/16 adults) underwent a single session of RSE consisting of 3 rounds with 6 supra-maximal sprints interspersed with 5 minutes of passive rest. The recovery HR (between rounds) and the HRV from pre-, 20 minutes, 2 hours, and 24 hours post-RSE were assessed using short-range radio telemetry and used to calculate the CAR. In adolescents, BM was analysed using peak-height-velocity (PHV).

Results:
Adolescents demonstrated more efficient parasympathetic reactivation than adults after RSE (η2p = 0.574, p < 0.05), especially those in the pre-PHV stage of BM ( η2p = 0.659, p < 0.05). For HRV, we identified an effect of time for both RSE groups on the mean square root of successive differences in intervals between heartbeats (RMSSD) (η2p = 0.280, p < 0.05) and the low frequency/high frequency ratio (LF/HF) ( η2p = 0.129, p < 0.05). Adolescents indicated higher values than adults for RMSSD and LF.

Conclusions:
Parasympathetic activity is less affected in adolescents, especially pre-PHV, after RSE. In both groups, at least two hours after RSE, parasympathetic activity tended to return to baseline values, stabilising again 24 hours after RSE.
REFERENCES (74)
1.
Shen M. The cardiac autonomic nervous system: an introduction. Herzschrittmacherther Elektrophysiol. 2021;32(3):295–301; doi: 10.1007/s003 99-021-00776-1.
 
2.
Facioli T, Philbois S, Gastaldi A, Almeida D, Maida K, Rodrigues J, Sánchez-Delgado JC, Souza HCD. Study of heart rate recovery and cardiovascular autonomic modulation in healthy participants after submaximal exercise. Sci Rep. 2021; 11(1):3620; doi: 10.1038/s41598-021-83071-w.
 
3.
Speer K, Naumovski N, Semple S, McKune A. Lifestyle modification for enhancing autonomic cardiac regulation in children: the role of exercise. Children. 2019;6(11):127; doi: 10.3390/children 6110127.
 
4.
Dos Santos R, Rosa E, Rosa T, Ferreira EA, Gris E, de Andrade R, Amato AA. Sedentary behavior: a key component in the interaction between an integrated lifestyle approach and cardiac autonomic function in active young men. Int J Environ Res Public Health. 2019;16(12):2156; doi: 10.3390/ ijerph16122156.
 
5.
Peçanha T, Bartels R, Brito LC, Paula-Ribeiro M, Oliveira R, Goldberger J. Methods of assessment of the post-exercise cardiac autonomic recovery: a methodological review. Int J Cardiol. 2017;227: 795–802; doi: 10.1016/j.ijcard.2016.10.057.
 
6.
Mellema MS, Kohen CJ. Electrocardiogram interpretation. In: Creedon JMB, Davis H (eds.) Advanced Monitoring and Procedures for Small Animal Emergency and Critical Care. John Wiley and Sons; 2012, pp. 89–106; doi: 10.1002/978111899 7246.ch7.
 
7.
Domaradzki J, Koźlenia D, Popowczak M. The relative importance of age at peak height velocity and fat mass index in high-intensity interval training effect on cardiorespiratory fitness in adolescents: a randomised controlled trial. Children. 2022;9(10): 1554; doi: 10.3390/children9101554.
 
8.
Krakan I, Milanovic L, Belcic I. Effects of plyometric and repeated sprint training on physical performance. Sports. 2020;8(7):91; doi: 10.3390/ sports8070091.
 
9.
Thurlow F, Huynh M, Townshend A, McLaren S, James LP, Taylor J, Weston M, Weakley J. The effects of repeated-sprint training on physical fitness and physiological adaptation in athletes: a systematic review and meta-analysis. Sport Med. 2024;54:953–74; doi: 10.1007/s40279-023-019 59-1.
 
10.
Špenko M, Potočnik I, Edwards I, Potočnik N. Training history, cardiac autonomic recovery from submaximal exercise and associated performance in recreational runners. Int J Environ Res Public Health. 2022;19(16):9797; doi: 10.3390/ijerph 19169797.
 
11.
Bentley R, Vecchiarelli E, Banks L, Gonçalves P, Thomas S, Goodman J. Heart rate variability and recovery following maximal exercise in endurance athletes and physically active individuals. Appl Physiol Nutr Metab. 2020;45(10):1138–44; doi: 10.1139/apnm-2020-0154.
 
12.
de Almeida-Neto PF, de Oliveira FCS, de Oliveira- Júnior JM, Alves JCM, de Lima Rocha M, da Silva IM, Rocha RFC, Dantas PMS, Cabral BGAT. Influence of biological maturation on cardiac autonomic recovery in female volleyball players during and after repeated sprints training: an experimental trial. Sports Med Health Sci. 2023;6(3): 279–86.; doi: 10.1016/j.smhs.2023.10.002.
 
13.
Pieles G, Stuart A. The adolescent athlete’s heart; a miniature adult or grown-up child?. Clin Cardiol. 2020;43(8):852–62; doi: 10.1002/clc.23417.
 
14.
Harteveld L, Nederend I, Ten Harkel A, Schutte N, De Rooij S, Vrijkotte T, Oldenhof H, Popma A, Jansen LMC, Suurland J, Swaab H, de Geus EJC; FemNAT-CD collaborators. Maturation of the cardiac autonomic nervous system activity in children and adolescents. J Am Heart Assoc. 2021;10(4): e017405; doi: 10.1161/JAHA.120.017405.
 
15.
Riederer MF. Growth spurts and athletic training. Sports Health. 2023;15(5):631–2; doi: 10.1177/ 19417381231187909.
 
16.
Faul F, Erdfelder E, Lang A, Buchner A. G* Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39(2):175–91; doi: 10.3758/BF03193146.
 
17.
Perine A, de Oliveira G, Ornellas J, de Oliveira F. Technical error of measurement in anthropometry. Rev Bras Med Esporte. 2005;11(1):86–90; doi: 10.1590/S1517-86922005000100009.
 
18.
DuBois D, DuBois EF. A formula to estimate the approximate surface area if height and body mass be known. Arch Intern Med. 1916;17:863–71; doi: 10.1001/archinte.1916.00080130010002.
 
19.
Nadler S, Hidalgo J, Bloch T. Prediction of blood volume in normal human adults. Surgery. 1962; 51(2):224–32; doi: 10.5555/uri:pii:0039606062 901666.
 
20.
Pires A, Pires Junior R, Oliveira R. Consistency between print and electronic International Physical Activity Questionnaire (IPAQ-L) formats [in Portuguese]. Rev Bras Med Esporte. 2014;20(6): 474–9; doi: 10.1590/1517-86922014200602134.
 
21.
Khadilkar A, Chiplonkar S, Sanwalka N, Khadilkar V, Mandlik R, Ekbote V. A cross-calibration study of GE lunar iDXA and GE lunar DPX pro for body composition measurements in children and adults. J Clin Densitom. 2020;23(1):128–37; doi: 10.1016/j.jocd.2019.03.003.
 
22.
Reed D, Sacco W. Measuring sleep efficiency: what should the denominator be?. J Clin Sleep Med. 2016;12(2):263–6; doi: 10.5664/jcsm.5498.
 
23.
Gibson R. Principles of Nutritional Assessment. Oxford: Oxford University Press; 2005.
 
24.
Castell G, Serra-Majem L, Ribas-Barba L. What and how much do we eat? 24-hour dietary recall method. Nutr Hosp. 2015;31(Suppl 3):46–8; doi: 10.3305/nh.2015.31.sup3.8750.
 
25.
Khamis H, Roche A. Predicting adult stature without using skeletal age: the Khamis-Roche method. Pediatrics. 1994;94(4):504–7; doi: 10.1542/peds. 94.4.504.
 
26.
Moore S, McKay H, Macdonald H, Nettlefold L, Baxter-Jones A, Cameron N, Brasher PMA. Enhancing a somatic maturity prediction model. Med Sci Sports Exerc. 2015;47(8):1755–64; doi: 10.1249/MSS.0000000000000588.
 
27.
Borg G. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377–81.
 
28.
Borg G. Borg Scales for Pain and Exertion. Perceived [in Portuguese]. Manole; 2000.
 
29.
Schaffarczyk M, Rogers B, Reer R, Gronwald T. Validity of the polar H10 sensor for heart rate variability analysis during resting state and incremental exercise in recreational men and women. Sensors. 2022;22(17):6536; doi: 10.3390/s22176536.
 
30.
Buchheit M, Gindre C. Cardiac parasympathetic regulation: respective associations with cardiorespiratory fitness and training load. Am J Physiol Heart Circ Physiol. 2006;291(1):H451–8; doi: 10.1152/ajpheart.00008.2006.
 
31.
Buchheit M, Papelier Y. Laursen PB, Ahmaidi S. Noninvasive assessment of cardiac parasympathetic function: post exercise heart rate recovery or heart rate variability. Am J Physiol Heart Circ Physiol. 2007;293(1):H8–10; doi: 10.1152/ajpheart. 00335.2007.
 
32.
Shaffer F, Ginsberg J. An overview of heart rate variability metrics and norms. Front Public Health. 2017;5:258; doi: 10.3389/fpubh.2017.00258.
 
33.
Mishra P, Pandey C, Singh U, Gupta A, Sahu C, Keshri A. Descriptive statistics and normality tests for statistical data. Ann Card Anaesth. 2019;22(1): 67–72; doi: 10.4103/aca.ACA_157_18.
 
34.
Gallucci M. GAMLj: General linear models. Milano: [jamovi module]; 2019 [cited]. Available from: https://gamlj.github.io/glm.ht... (accessed 04.08.2024).
 
35.
Kim K, Timm N. Univariate and Multivariate General Linear Models. Theory and Applications with SAS. Boca Raton: Chapman and Hall/CRC; 2006.
 
36.
Cohen J. Statistical Power for the Behavioural Sciences. Hillsdale: Lawrence Erlbaum Associates; 1988.
 
37.
Stuckey M, Tordi N, Mourot L, Gurr L, Rakobowchuk M, Millar P, Toth R, MacDonald MJ, Kamath MV. Autonomic recovery following sprint interval exercise. Scand J Med Sci Sports. 2012; 22(6):756–63; doi: 10.1111/j.1600-0838.2011.01 320.x.
 
38.
Glaister M, Howatson G, Pattison J, McInnes G. The reliability and validity of fatigue measures during multiple-sprint work: an issue revisited. J Strength Cond Res. 2008;22(5):1597–601; doi: 10.1519/JSC.0b013e318181ab80.
 
39.
Spencer M, Bishop D, Dawson B, Goodman C. Physiological and metabolic responses of repeated- sprint activities: specific to field-based team sports. Sports Med. 2005;35:1025–44; doi: 10.2165/ 00007256-200535120-00003.
 
40.
Buchheit M, Laursen PB, Ahmaidi S. Parasympathetic reactivation after repeated sprint exercise. Am J Physiol Heart Circ Physiol. 2007;293(1): H133–41; doi: 10.1152/ajpheart.00062.2007.
 
41.
Abad C, Pereira L, Zanetti V, Kobal R, Loturco I, Nakamura F. Short-term cardiac autonomic recovery after a repeated sprint test in young soccer players. Sports. 2019;7(5):102; doi: 10.3390/ sports7050102.
 
42.
ChuDuc H, NguyenPhan K, NguyenViet D. A review of heart rate variability and its applications. APCBEE Procedia. 2013;7:80–5; doi: 10.1016/j. apcbee.2013.08.016.
 
43.
Niewiadomski W, Gąsiorowska A, Krauss B, Mróz A, Cybulski G. Suppression of heart rate variability after supramaximal exertion. Clin Physiol Funct Imaging. 2007;27(5):309–19; doi: 10.1111/ j.1475-097X.2007.00753.x.
 
44.
Lloria-Varella J, Koral J, Ravel A, Féasson L, Murias J, Busso T. Neuromuscular and autonomic function is fully recovered within 24 h following a sprint interval training session. Eur J Appl Physiol. 2023;123(10):2317–29; doi: 10.1007/s00421- 023-05249-6.
 
45.
Cunha F, Midgley A, Gonçalves T, Soares P, Farinatti P. Parasympathetic reactivation after maximal CPET depends on exercise modality and resting vagal activity in healthy men. Springerplus. 2015;4:100; doi: 10.1186/s40064-015-0882-1.
 
46.
Rowland T. Children’s Exercise Physiology. Champaign: Human Kinetics; 2005.
 
47.
Feito Y, Giardina M, Butcher S, Mangine G. Repeated anaerobic tests predict performance among a group of advanced CrossFit-trained athletes. Appl Physiol Nutr Metab. 2019;44(7):727–35; doi: 10.1139/apnm-2018-0509.
 
48.
Stöggl T, Björklund G. High intensity interval training leads to greater improvements in acute heart rate recovery and anaerobic power as high volume low intensity training. Front Physiol. 2017;8:279839; doi: 10.3389/fphys.2017.00562.
 
49.
Rodríguez-Fernández A, Sanchez-Sanchez J, Ramirez- Campillo R, Nakamura F, Rodríguez-Marroyo JA, Villa-Vicente JG. Relationship between repeated sprint ability, aerobic capacity, intermittent endurance, and heart rate recovery in youth soccer players. J Strength Cond Res. 2019;33(12): 3406–13; doi: 10.1519/JSC.0000000000002193.
 
50.
Durmić T, Ðjelić M, Gavrilović T, Antić M, Jeremić R, Vujović A, Mihailović Z, Zdravković M. Usefulness of heart rate recovery parameters to monitor cardiovascular adaptation in elite athletes: the impact of the type of sport. Physiol Int. 2019;106(1):81–94; doi: 10.1556/2060.106.2019.03.
 
51.
Veerman D, Imholz B, Wieling W, Karemaker J, van Montfrans G. Effects of aging on blood pressure variability in resting conditions. Hypertension. 1994;24(1):120–30; doi: 10.1161/01.HYP.24. 1.120.
 
52.
La Rovere M. Baroreflex sensitivity as a new marker for risk stratification. Z Kardiol. 2000;89(Suppl 3):44–50; doi: 10.1007/s003920070082.
 
53.
Voss A, Schulz S, Schroeder R, Baumert M, Caminal P. Methods derived from nonlinear dynamics for analysing heart rate variability. Philos Trans A Math Phys Eng Sci. 2009;367(1887):277–96; doi: 10.1098/rsta.2008.0232.
 
54.
Buchheit M, Duche P, Laursen P, Ratel S. Postexercise heart rate recovery in children: relationship with power output, blood pH, and lactate. Appl Physiol Nutr Metab. 2010;35(2):142–50; doi: 10.1139/H09-140.
 
55.
Baraldi E, Cooper D, Zanconato S, Armon Y. Heart rate recovery from 1 minute of exercise in children and adults. Pediatr Res. 1991;29(6):575– 9; doi: 10.1203/00006450-199106010-00011.
 
56.
Esler M, Lambert G, Esler D, Sari C, Guo L, Jennings G. Evaluation of elevated heart rate as a sympathetic nervous system biomarker in essential hypertension. J Hypertens. 2020;38(8):1488–95; doi: 10.1097/HJH.0000000000002407.
 
57.
Rang HP, Ritter JM, Flower RJ, Henderson G. Pharmacology. Elsevier; 2016.
 
58.
Hering D, Lachowska K, Schlaich M. Role of the sympathetic nervous system in stress-mediated cardiovascular disease. Curr Hypertens Rep. 2015; 17:80; doi: 10.1007/s11906-015-0594-5.
 
59.
Ratel S, Blazevich A. Are prepubertal children metabolically comparable to well-trained adult endurance athletes?. Sports Med. 2017;47(8):1477– 85; doi: 10.1007/s40279-016-0671-1.
 
60.
Kaczor J, Ziolkowski W, Popinigis J, Tarnopolsky M. Anaerobic and aerobic enzyme activities in human skeletal muscle from children and adults. Pediatr Res. 2005;57(3):331–5; doi: 10.1203/01. PDR.0000150799.77094.DE.
 
61.
Birat A, Bourdier P, Piponnier E, Blazevich A, Maciejewski H, Duché P, Ratel S. Metabolic and fatigue profiles are comparable between prepubertal children and well-trained adult endurance athletes. Front Physiol. 2018;9:387; doi: 10.3389/ fphys.2018.00387.
 
62.
Washington R, van Gundy J, Cohen C, Sondheimer H, Wolfe R. Normal aerobic and anaerobic exercise data for North American school-age children. J Pediatr;112(2):223–33; doi: 10.1016/S0022- 3476(88)80059-3.
 
63.
Buchheit M, Al Haddad H, Mendez-Villanueva A, Quod M. Effect of maturation on hemodynamic and autonomic control recovery following maximal running exercise in highly trained young soccer players. Front Physiol. 2011;2:69; doi: 10.3389/ fphys.2011.00069.
 
64.
Malina R, Bouchard C. Physical Activity of the Young Athlete. From Growth to Maturation [in Portuguese]. Roca: São Paulo; 2002.
 
65.
Tanner J. Growth of the human at the time of adolescence. Lect Sci Basis Med. 1953;1:308–63.
 
66.
De Almeida-Neto P, de Medeiros J, Medeiros R, Baxter-Jones A, de Matos D, Aidar F, Dantas P, Cabral BGAT. Reliability of biological maturation analyses performed by equations predicting skeletal age and peak height velocity with hand and wrist X-ray results. Am J Hum Biol. 2022;34(9): e23775.
 
67.
De Almeida-Neto P, Baxter-Jones A, Arrais R, de Azevedo J, Dantas P, Cabral B, Medeiros RMV. Enhancement of a mathematical model for predicting puberty stage in boys: a cross-sectional study. Am J Hum Biol. 2025;37(1):e24193; doi: 10.1002/ajhb.24193.
 
68.
Domaradzki J, Cichy I, Rokita A, Popowczak M. Effects of Tabata training during physical education classes on body composition, aerobic capacity, and anaerobic performance of under-, normaland overweight adolescents. Int J Environ Res Public Health. 2020;17(3):876; doi: 10.3390/ijerph 17030876.
 
69.
Liu Y, Wadey C, Barker A, Williams C. Process evaluation of school-based high-intensity interval training interventions for children and adolescents: a systematic review and meta-analysis of randomised controlled trials. BMC Public Health. 2024;24(1):348; doi: 10.1186/s12889-024-17786-6.
 
70.
Popowczak M, Rokita A, Domaradzki J. Effects of Tabata training on health-related fitness compo- nents among secondary school students. Kinesiology. 2022;54(2):221–9; doi: 10.26582/k.54.2.2.
 
71.
Costigan S, Eather N, Plotnikoff R, Taaffe D, Lubans D. High-intensity interval training for improving health-related fitness in adolescents: a systematic review and meta-analysis. Br J Sports Med. 2015;49(19):1253–61; doi: 10.1136/bjsports-2014- 094490.
 
72.
Koukouras D, Tere A, Koukouras P, Jemni M. The Nordbord usefulness in football: a systematic review of the pros and cons. Hum Mov. 2024;25(2): 64–85; doi: 10.5114/hm/189166.
 
73.
Clemente F. Bibliometric analysis of scientific production in small-sided games. Hum Mov. 2023; 24(4):1–17; doi: 10.5114/hm.2023.132707.
 
74.
Santana E, de Medeiros M, de Almeida Neto P, de Lima Rocha M, Dantas PMS, Cabral BGAT. Effect of plyometric and sprint training on repeated sprint and vertical jump capacities in volleyball players aged 11 to 14 years: a longitudinal study. Res Soc. 2024;13(2):e8313244923; doi: 10.33448/ rsd-v13i2.44923.
 
eISSN:1899-1955
Journals System - logo
Scroll to top