ORIGINAL PAPER
Spatiotemporal gait and centre of mass variables while performing different smartphone tasks and confronting obstacle among young adults
 
More details
Hide details
1
Faculty of Physical Therapy, Mahidol University, Nakhon Pathom, Thailand
 
 
Submission date: 2020-04-24
 
 
Acceptance date: 2021-02-08
 
 
Publication date: 2021-11-17
 
 
Hum Mov. 2022;23(3):92-103
 
KEYWORDS
TOPICS
ABSTRACT
Purpose:
Smartphone is one of the essential tools but may be inappropriate during locomotion or transportation owing to cognitive distractions. The study aimed to investigate the main effects of smartphone tasks, obstacle conditions, and their interaction on the spatiotemporal gait and centre of mass (COM) variables among healthy young adults.

Methods:
The study used a single group with repeated measures design. Overall, 20 participants completed 4 smartphone tasks (no task, texting, calling, and watching), combined with 2 conditions of obstacle confrontation (with and without). Spatiotemporal gait (step length, step time, cadence, and gait speed) and COM variables during gait (excursion and velocity in mediolateral and vertical directions) were collected.

Results:
Significant effects of smartphone tasks and obstacle conditions were found, while no interaction effect between smartphone tasks and obstacle was found. There were alterations of the spatiotemporal gait and COM variables during walking, both with and without obstacle. The obstacle condition significantly influenced the different tasks of mobile perturbation, all spatiotemporal gait and COM variables, except for the COM mediolateral velocity.

Conclusions:
Confronting smartphone tasks and obstacle conditions concurrently challenges young adults to adjust their movement and balance control systems to perform the tasks successfully.

 
REFERENCES (39)
1.
Csibi S, Griffiths MD, Demetrovics Z, Szabo A. Analysis of problematic smartphone use across different age groups within the ‘components model of addiction’. Int J Ment Health Addiction. 2021;19:616–631; doi: 10.1007/s11469-019-00095-0.
 
2.
Kim H-J, Min J-Y, Kim H-J, Min K-B. Accident risk associated with smartphone addiction: a study on University students in Korea. J Behav Addict. 2017;6(4):699–707; doi: 10.1556/2006.6.2017.070.
 
3.
Kim Y, Briley DA, Ocepek MG. Differential innovation of smartphone and application use by sociodemographics and personality. Comput Hum Behav. 2015;44:141–147; doi: 10.1016/j.chb.2014.11.059.
 
4.
Schade SA, Mahoney JM, Spotts AV, Greenauer N, Veerabhadrappa P. Pokémon Go did not increase step count or distance travelled among college students. Hum Mov. 2020;21(2):64–70; doi: 10.5114/hm.2020.89916.
 
5.
Derhon V, Santos RA, Brandalize M, Brandalize D, Rossi LP. Intra- and inter-examiner reliability in angular measurements of the knee with a smartphone application. Hum Mov. 2017;18(2):38–43; doi: 10.1515/humo-2017-0011.
 
6.
Crowley P, Madeleine P, Vuillerme N. The effects of mobile phone use on walking: a dual task study. BMC Res Notes. 2019;12(1):352; doi: 10.1186/s13104-019-4391-0.
 
7.
Zhang L, Cui B, Yang M, Guo F, Wang J. Effect of using mobile phones on driver’s control behavior based on naturalistic driving data. Int J Environ Res Public Health. 2019;16(8):1464; doi: 10.3390/ijerph16081464.
 
8.
Lin M-IB , Huang Y-P. The impact of walking while using a smartphone on pedestrians’ awareness of roadside events. Accid Anal Prev. 2017;101:87–96; doi: 10.1016/j.aap.2017.02.005.
 
9.
Licence S, Smith R, McGuigan MP, Earnest CP. Gait pattern alterations during walking, texting and walking and texting during cognitively distractive tasks while negotiating common pedestrian obstacles. PLoS One. 2015;10(7):e0133281; doi: 10.1371/journal.pone.0133281.
 
10.
Hyman IE Jr, Boss SM, Wise BM, McKenzie KE, Caggiano JM. Did you see the unicycling clown? Inattentional blindness while walking and talking on a cel phone. Appl Cogn Psychol. 2010;24(5):597–607; doi: 10.1002/acp.1638.
 
11.
Stöckel T, Mau-Moeller A. Cognitive control processes associated with successful gait performance in dual-task walking in healthy young adults. Psychol Res. 2020;84(6):1766–1776; doi: 10.1007/s00426-019-01184-4.
 
12.
Shumway-Cook A, Woollacott MH. Motor control: translating research into clinical practice, 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2017.
 
13.
Tesio L, Rota V. The motion of body center of mass during walking: a review oriented to clinical applications. Front Neurol. 2019;10:999; doi: 10.3389/fneur.2019.00999.
 
14.
Chen S-H, Lo O-Y, Kay T, Chou L-S. Concurrent phone texting alters crossing behavior and induces gait imbalance during obstacle crossing. Gait Posture. 2018;62:422–425; doi: 10.1016/j.gaitpost.2018.04.004.
 
15.
Chopra P, Castelli DM, Dingwell JB. Cognitively demanding object negotiation while walking and texting. Sci Rep. 2018;8(1):17880; doi: 10.1038/s41598-018-36230-5.
 
16.
Bovonsunthonchai S, Ariyaudomkit R, Susilo TE, Sangiamwong P, Puchaphan P, Chandee S, et al. The impact of different mobile phone tasks on gait behaviour in healthy young adults. J Transp Health. 2020;19:100920; doi: 10.1016/j.jth.2020.100920.
 
17.
Plummer P, Apple S, Dowd C, Keith E. Texting and walking: effect of environmental setting and task prioritization on dual-task interference in healthy young adults. Gait Posture. 2015;41(1):46–51; doi: 10.1016/j.gaitpost.2014.08.007.
 
18.
Agostini V, Lo Fermo F, Massazza G, Knaflitz M. Does texting while walking really affect gait in young adults? J Neuroeng Rehabil. 2015;12:86; doi: 10.1186/s12984-015-0079-4.
 
19.
Niederer D, Bumann A, Mühlhauser Y, Schmitt M, Wess K, Engeroff T, et al. Specific smartphone usage and cognitive performance affect gait characteristics during free-living and treadmill walking. Gait Posture. 2018;62:415–421; doi: 10.1016/j.gaitpost.2018.04.007.
 
20.
Orendurff MS, Segal AD, Klute GK, Berge JS, Rohr ES, Kadel NJ. The effect of walking speed on center of mass displacement. J Rehabil Res Dev. 2004;41(6A):829–834; doi: 10.1682/jrrd.2003.10.0150.
 
21.
Lim J, Chang SH, Lee J, Kim K. Effects of smartphone texting on the visual perception and dynamic walking stability. J Exerc Rehabil. 2017;13(1):48–54; doi: 10.12965/jer.1732920.460.
 
22.
Magnani RM, Lehnen GC, Rodrigues FB, de Sá E Souza GS, de Oliveira Andrade A, Vieira MF. Local dynamic stability and gait variability during attentional tasks in young adults. Gait Posture. 2017;55:105–108; doi: 10.1016/j.gaitpost.2017.04.019.
 
23.
Lo O-Y, Chou L-S. Effects of different visual attention tasks on obstacle crossing in healthy young adults. Biomed Eng Appl Basis Commun. 2015;27(6):1550059; doi: 10.4015/s1016237215500593.
 
24.
Saunders JB, Inman VT, Eberhart HD. The major determinants in normal and pathological gait. J Bone Joint Surg Am. 1953;35-A(3):543–558.
 
25.
Hamacher D, Herold F, Wiegel P, Hamacher D, Schega L. Brain activity during walking: a systematic review. Neurosci Biobehav Rev. 2015;57:310–327; doi: 10.1016/j.neubiorev.2015.08.002.
 
26.
Fuster JM. Prefrontal cortex. In: Squire LR (ed.), Encyclopedia of neuroscience. Oxford: Academic Press; 2009; 905–908.
 
27.
Jeon S, Kim C, Song S, Lee G. Changes in gait pattern during multitask using smartphones. Work. 2015;53(2):241–247; doi: 10.3233/WOR-152115.
 
28.
Pizzamiglio S, Naeem U, Abdalla H, Turner DL. Neural correlates of single- and dual-task walking in the real world. Front Hum Neurosci. 2017;11:460; doi: 10.3389/fnhum.2017.00460.
 
29.
Sejdić E, Findlay B, Merey C, Chau T. The effects of listening to music or viewing television on human gait. Comput Biol Med. 2013;43(10):1497–1501; doi: 10.1016/j.compbiomed.2013.07.019.
 
30.
Stoffregen TA, Pagulayan RJ, Bardy BG, Hettinger LJ. Modulating postural control to facilitate visual performance. Hum Mov Sci. 2000;19(2):203–220; doi: 10.1016/S0167-9457(00)00009-9.
 
31.
Yang HS, Atkins LT, Jensen DB , James CR. Effects of constrained arm swing on vertical center of mass displacement during walking. Gait Posture. 2015;42(4):430–434; doi: 10.1016/j.gaitpost.2015.07.010.
 
32.
Xiong J, Muraki S. An ergonomics study of thumb movements on smartphone touch screen. Ergonomics. 2014;57(6):943–955; doi: 10.1080/00140139.2014.904007.
 
33.
Timmis MA, Bijl H, Turner K, Basevitch I, Taylor MJD, van Paridon KN. The impact of mobile phone use on where we look and how we walk when negotiating floor based obstacles. PLoS One. 2017;12(6):e0179802; doi: 10.1371/journal.pone.0179802.
 
34.
Da Rocha ES, Machado ÁS, Franco PS, Guadagnin EC, Carpes FP. Gait asymmetry during dual-task obstacle crossing in the young and elderly. Hum Mov. 2013;14(2):138–143; doi: 10.2478/humo-2013-0016.
 
35.
Uchiyama M, Demura S, Sugiura H. The mobility performance of the elderly before, during and after crossing over an obstacle. Hum Mov. 2012;13(4):297–302; doi: 10.2478/v10038-012-0034-1.
 
36.
Maidan I, Shustak S, Sharon T, Bernad-Elazari H, Geffen N, Giladi N, et al. Prefrontal cortex activation during obstacle negotiation: what’s the effect size and timing? Brain Cogn. 2018;122:45–51; doi: 10.1016/j.bandc.2018.02.006.
 
37.
Chou LS, Kaufman KR, Brey RH, Draganich LF. Motion of the whole body’s center of mass when stepping over obstacles of different heights. Gait Posture. 2001;13(1):17–26; doi: 10.1016/s0966-6362(00)00087-4.
 
38.
Wang T-M, Chen H-L, Lu T-W. Effects of obstacle height on the control of the body center of mass motion during obstructed gait. J Chin Inst Eng. 2007;30(3):471–479; doi: 10.1080/02533839.2007.9671275.
 
39.
Marigold DS , Chang AJ, Lajoie K. Cutaneous reflex modulation during obstacle avoidance under conditions of normal and degraded visual input. Exp Brain Res. 2017;235(8):2483–2493; doi: 10.1007/s00221-017-4976-6.
 
eISSN:1899-1955
Journals System - logo
Scroll to top