ORIGINAL PAPER
Can muscle fatigue in women be influenced by knee extension tasks in different ranges of motion?
 
More details
Hide details
1
Weight Training Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais, Belo Horizonte, Brazil
 
2
Brazilian Air Force, Aeronautical Instruction and Adaptation Centre, Lagoa Santa, Brazil
 
 
Submission date: 2020-10-29
 
 
Acceptance date: 2021-04-27
 
 
Publication date: 2021-12-10
 
 
Hum Mov. 2022;23(3):56-64
 
KEYWORDS
TOPICS
ABSTRACT
Purpose:
The present study aimed to compare the strength performance in the one-repetition maximum (1RM) test with a knee extension machine among different ranges of motion (ROMs), and to compare the force reduction after the performance of a dynamic exercise configured with different ROMs.

Methods:
Nine women (mean ± standard deviation: age: 24.2 ± 3.5 years; height: 166.5 ± 4.1 cm; body mass: 68.35 ± 4.14 kg) with no strength training experience and no history of injury performed (cross-over design) tests of 1RM with a knee extension machine in the following ROMs: 100–65° of knee flexion (INITIALROM), 65–30° (FINALROM), and 100–30° (FULLROM) (0° = knee full extended). Further, the volunteers performed, in each ROM, 3 sets of 7 repetitions at 60% of 1RM (specific to ROM assessed) with 3-minute rests between sets with 2 seconds for concentric and eccentric phases. Before and 2 minutes after the training, the maximum torque values at 100° and 30° of knee flexion were registered to calculate the force reduction.

Results:
The ANOVA test identified that the maximum torque pre-training values were greater than the post-training values (p = 0.02), and a greater torque reduction occurred at 30° of knee flexion than at 100° (p = 0.001).

Conclusions:
The results suggest that ROM may influence maximum strength performance, and the force may reduce similarly along the angles.

REFERENCES (30)
1.
Newmire DE, Willoughby DS. Partial compared with full range of motion resistance training for muscle hypertrophy: a brief review and an identification of potential mechanisms. J Strength Cond Res. 2018;32(9):2652–2664; doi: 10.1519/JSC.0000000000002723.
 
2.
Guex K, Degache F, Morisod C, Sailly M, Millet GP. Hamstring architectural and functional adaptations following long vs. short muscle length eccentric training. Front Physiol. 2016;7:340; doi: 10.3389/fphys.2016.00340.
 
3.
Anderson DE, Madigan ML, Nussbaum MA. Maximum voluntary joint torque as a function of joint angle and angular velocity: model development and application to the lower limb. J Biomech. 2007;40(14):3105–3113; doi: 10.1016/j.jbiomech.2007.03.022.
 
4.
Dalleau G, Baron B, Bonazzi B, Leroyer P, Verstraete T, Verkindt C. The influence of variable resistance moment arm on knee extensor performance. J Sports Sci. 2010;28(6):657–665; doi: 10.1080/02640411003631976.
 
5.
Bloomquist K, Langberg H, Karlsen S, Madsgaard S, Boesen M, Raastad T. Effect of range of motion in heavy load squatting on muscle and tendon adaptations. Eur J Appl Physiol. 2013;113(8):2133–2142; doi: 10.1007/s00421-013-2642-7.
 
6.
Rhea MR, Kenn JG, Peterson MD, Massey D, Simão R, Marin PJ, et al. Joint-angle specific strength adaptations influence improvements in power in highly trained athletes. Hum Mov. 2016;17(1):43–49; doi: 10.1515/humo-2016-0006.
 
7.
Martínez-Cava A, Hernández-Belmonte A, Courel-Ibáñez J, Morán-Navarro R, González-Badillo JJ, Pallarés JG. Bench press at full range of motion produces greater neuromuscular adaptations than partial executions after prolonged resistance training. J Strength Cond Res. 2019; doi: 10.1519/JSC.0000000000003391.
 
8.
El-Ashker S, Allardyce JM, Carson BP. Sex-related differences in joint-angle-specific hamstring-to-quadriceps function following fatigue. Eur J Sport Sci. 2019;19(8):1053–1061; doi: 10.1080/17461391.2019.1574904.
 
9.
Kooistra RD, Blaauboer ME, Born JR, de Ruiter CJ, de Haan A. Knee extensor muscle oxygen consumption in relation to muscle activation. Eur J Appl Physiol. 2006;98(6):535–545; doi: 10.1007/s00421-006-0298-2.
 
10.
MacIntosh BR, MacNaughton MB. The length dependence of muscle active force: considerations for paralel elastic properties. J Appl Physiol. 2005;98(5):1666–1673; doi: 10.1152/japplphysiol.01045.2004.
 
11.
Akima H, Tomita A, Ando R. Effect of knee joint angle on the neuromuscular activation of the quadriceps femoris during repetitive fatiguing contractions. J Electromyogr Kinesiol. 2019;49:102356; doi: 10.1016/j.jelekin.2019.102356.
 
12.
Kooistra RD, de Ruiter CJ, de Haan A. Muscle activation and blood flow do not explain the muscle lengthdependent variation in quadriceps isometric endurance. J Appl Physiol. 2005;98(3):810–816; doi: 10.1152/japplphysiol.00712.2004.
 
13.
Allen DG, Lamb GD, Westerblad H. Skeletal muscle fatigue: cellular mechanisms. Physiol Rev. 2008;88(1):287–332; doi: 10.1152/physrev.00015.2007.
 
14.
Raeder C, Wiewelhove T, De Paula Simola RÁ, Kellmann M, Meyer T, Pfeiffer M, et al. Assessment of fatigue and recovery in male and female athletes after six days of intensified strength training. J Strength Cond Res. 2016;30(12):3412–3427; doi: 10.1519/JSC.0000000000001427.
 
15.
Graves JE, Pollock ML, Jones AE, Colvin AB, Leggett SH. Specificity of limited range of motion variable resistance training. Med Sci Sports Exerc. 1989;21(1):84–89; doi: 10.1249/00005768-198902000-00015.
 
16.
Noorkõiv M, Nosaka K, Blazevich AJ. Neuromuscular adaptations associated with knee joint angle-specific force change. Med Sci Sports Exerc. 2014;46(8):1525–1537; doi: 10.1249/MSS.0000000000000269.
 
17.
Rooney KJ, Herbert RD , Balnave RJ. Fatigue contributes to the strength training stimulus. Med Sci Sports Exerc. 1994;26(9):1160–1164.
 
18.
Beck TW. The importance of a priori sample size estimation in strength and conditioning research. J Strength Cond Res. 2013;27(8):2323–2337; doi: 10.1519/JSC.0b013e318278eea0.
 
19.
Fukutani A, Joumaa V, Herzog W. Influence of residua force enhancement and elongation of attached crossbridges on stretch-shortening cycle in skinned muscle fibers. Physiol Rep. 2017;5(22):e13477; doi: 10.14814/phy2.13477.
 
20.
Cohen J. Statistical power analysis for the behavioral sciences. New York: Lawrence Erlbaum Associates; 1988.
 
21.
Batterham AM, Hopkins WG. Making meaningful inferences about magnitudes. Int J Sports Physiol Perform. 2006;1(1):50–57; doi: 10.1123/ijspp.1.1.50.
 
22.
Blazevich AJ, Cannavan D, Coleman DR, Horne S. Influence of concentric and eccentric resistance training on architectural adaptation in human quadriceps muscles. J Appl Physiol. 2007;103(5):1565–1575; doi: 10.1152/japplphysiol.00578.2007.
 
23.
Bakenecker P, Raiteri B, Hahn D. Patella tendon moment arm function considerations for human vastus lateralis force estimates. J Biomech. 2019;86:225–231; doi: 10.1016/j.jbiomech.2019.01.042.
 
24.
Kosterina N, Westerblad H, Lännergren J, Eriksson A. Muscular force production after concentric contraction. J Biomech. 2008;41(11):2422–2429; doi: 10.1016/j.jbiomech.2008.05.019.
 
25.
Chen J, Hahn D, Power GA. Shortening-induced residual force depression in humans. J Appl Physiol. 2019;126(4):1066–1073; doi: 10.1152/japplphysiol.00931.2018.
 
26.
MacIntosh BR. Recent developments in understanding the length dependence of contractile response of skeletal muscle. Eur J Appl Physiol. 2017;117(6):1059–1071; doi: 10.1007/s00421-017-3591-3.
 
27.
MacNaughton MB, Campbell JJ, MacIntosh BR. Dantrolene, like fatigue, has a length-dependent effect on submaximal force-length relationships of rat gastrocnemius muscle. Acta Physiol. 2007;189(3):271–278; doi: 10.1111/j.1748-1716.2006.01645.x.
 
28.
Joumaa V, Curtis Smith I, Fakutani A, Leonard T, Ma W, Irving T, et al. Evidence for actin filament structural changes after active shortening in skinned muscle bundles. Biophys J. 2018;114(3 Suppl. 1):135a; doi: 10.1016/j.bpj.2017.11.765.
 
29.
Folland JP, Irish CS, Roberts JC, Tarr JE, Jones DA. Fatigue is not a necessary stimulus for strength gains during resistance training. Br J Sports Med. 2002;36(5):370–373; doi: 10.1136/bjsm.36.5.370.
 
30.
Pedersen KK, Madsen MK, Hvid LG, Overgaard K. Concentric strength training at optimal or short muscle length improves strength equally but does not reduce fatigability of hamstring muscles. Physiol Rep. 2019;7(16):e14196; doi: 10.14814/phy2.14196.
 
eISSN:1899-1955
Journals System - logo
Scroll to top