ORIGINAL PAPER
A single training session of visual choice reaction time after mild stroke: a proof of concept
 
More details
Hide details
1
Department of Applied Physical Therapy, Federal University of Triângulo Mineiro, Uberaba, Brazil
 
2
Centre for Innovation and Technology Assessment in Health, Faculty of Electrical Engineering, Federal University of Uberlândia, Uberlândia, Brazil
 
3
Department of Neurology, Botucatu Medical School, São Paulo State University, Botucatu, Brazil
 
 
Submission date: 2020-08-25
 
 
Acceptance date: 2021-01-18
 
 
Publication date: 2021-10-26
 
 
Hum Mov. 2022;23(2):21-27
 
KEYWORDS
TOPICS
ABSTRACT
Purpose:
Visual choice reaction time can be measured in reaching, which is an important task to investigate after stroke owing to its high clinical importance in activities of daily living. The study aim was to evaluate the visual choice reaction time during reaching tasks in the ipsilateral and contralateral spaces before and after a single training session of choice reaction time in patients after a mild stroke.

Methods:
The cross-sectional study involved 7 individuals after a mild stroke. The visual choice reaction time was evaluated during reaching in the affected and unaffected sides in the ipsilateral and contralateral spaces. All individuals trained the choice reaction time during a functional reaching task in a single session. In the training, 6 circles were used in a randomized sequence in 5 blocks, with 10 stimuli per block, for a total of 50 repetitions.

Results:
There was a significant reduction in the choice reaction time for the unaffected side in the ipsilateral space after training (p = 0.041). The other task conditions did not show a statistical difference, but a clinical relevance based on Cohen’s d (d > 0.60).

Conclusions:
A single training session can decrease the choice reaction time for the affected side during tasks in the ipsilateral space after a mild stroke.

REFERENCES (34)
1.
Pullman SL, Watts RL, Juncos JL, Chase TN, Sanes JN. Dopaminergic effects on simple and choice reaction time performance in Parkinson’s disease. Neurology. 1988;38(2):249–254; doi: 10.1212/wnl.38.2.249.
 
2.
Godefroy O, Spagnolo S, Roussel M, Boucart M. Stroke and action slowing: mechanisms, determinants and prognosis value. Cerebrovasc Dis. 2010;29(5):508–514; doi: 10.1159/000297968.
 
3.
Cauraugh J, Kim S. Stroke motor recovery: active neuromuscular stimulation and repetitive practice schedules. J Neurol Neurosurg Psychiatry. 2003;74(11):1562–1566; doi: 10.1136/jnnp.74.11.1562.
 
4.
Kubicki A, Petrement G, Bonnetblanc F, Ballay Y, Mourey F. Practice-related improvements in postural control during rapid arm movement in older adults: a preliminary study. J Gerontol A Biol Sci Med Sci. 2012;67(2):196–203; doi: 10.1093/gerona/glr148.
 
5.
Bleyenheuft Y, Gordon AM. Precision grip in congenital and acquired hemiparesis: similarities in impairments and implications for neurorehabilitation. Front Hum Neurosci. 2014;8:459; doi: 10.3389/fnhum.2014.00459.
 
6.
Wagner JM, Dromerick AW, Sahrmann SA, Lang CE. Upper extremity muscle activation during recovery of reaching in subjects with post-stroke hemiparesis. Clin Neurophysiol. 2007;118(1):164–176; doi: 10.1016/j.clinph.2006.09.022.
 
7.
Pauley T, Phadke CP, Kassam A, Ismail F, Boulias C, Devlin M. The influence of a concurrent cognitive task on lower limb reaction time among stroke survivors with right- or left-hemiplegia. Top Stroke Rehabil. 2015;22(5):342–348; doi: 10.1179/1074935714Z.0000000041.
 
8.
Pohl PS, McDowd JM, Filion D, Richards LG, Stiers W. Implicit learning of a motor skill after mild and moderate stroke. Clin Rehabil. 2006;20(3):246–253; doi: 10.1191/0269215506cr916oa.
 
9.
Orrell AJ, Eves FF, Masters RSW, MacMahon KMM. Implicit sequence learning processes after unilateral stroke. Neuropsychol Rehabil. 2007;17(3):335–354; doi: 10.1080/09602010600832788.
 
10.
Stewart JC, Dewanjee P, Shariff U, Cramer SC. Dorsal premotor activity and connectivity relate to action selection performance after stroke. Hum Brain Mapp. 2016;37(5):1816–1830; doi: 10.1002/hbm.23138.
 
11.
Lai S-M, Studenski S, Duncan PW, Perera S. Persisting consequences of stroke measured by the Stroke Impact Scale. Stroke. 2002;33(7):1840–1844; doi: 10.1161/01.str.0000019289.15440.f2.
 
12.
Woods DL, Wyma JM, Yund EW, Herron TJ, Reed B. Factors influencing the latency of simple reaction time. Front Hum Neurosci. 2015;9:131; doi: 10.3389/fnhum.2015.00131.
 
13.
Lang CE, Lohse KR, Birkenmeier RL. Dose and timing in neurorehabilitation: prescribing motor therapy after stroke. Curr Opin Neurol. 2015;28(6):549–555; doi: 10.1097/WCO.0000000000000256.
 
14.
Lin C-HJ, Winstein CJ, Fisher BE, Wu AD. Neural correlates of the contextual interference effect in motor learning: a transcranial magnetic stimulation investigation. J Mot Behav. 2010;42(4):223–232; doi: 10.1080/00222895.2010.492720.
 
15.
Kal E, Winters M, van der Kamp J, Houdijk H, Groet E, van Bennekom C, et al. Is implicit motor learning preserved after stroke? A systematic review with metaanalysis. PLoS One. 2016;11(12):e0166376; doi: 10.1371/journal.pone.0166376.
 
16.
Ashworth B. Preliminary trial of carisoprodol in multiple sclerosis. Practitioner. 1964;192:540–542.
 
17.
Brucki SMD, Nitrini R, Caramelli P, Bertolucci PHF, Okamoto IH. Suggestions for utilization of the minimental state examination in Brazil [in Portuguese]. Arq Neuropsiquiatr. 2003;61(3B):777–781; doi: 10.1590/s0004-282x2003000500014.
 
18.
Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–198; doi: 10.1016/0022-3956(75)90026-6.
 
19.
Maki T, Quagliato EMAB, Cacho EWA, Paz LPS, Nascimento NH, Inoue MMEA, et al. Reliability study on the application of the Fugl-Meyer scale in Brazil. Braz J Phys Ther. 2006;10(2):177–183; doi: 10.1590/S1413-35552006000200007.
 
20.
Bohannon RW, Smith MB. Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys Ther. 1987;67(2):206–207; doi: 10.1093/ptj/67.2.206.
 
21.
Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G. Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol. 2000;10(5):361–374; doi: 10.1016/s1050-6411(00)00027-4.
 
22.
Winstein CJ, Stein J, Arena R, Bates B, Cherney LR, Cramer SC, et al. Guidelines for adult stroke rehabilitation and recovery: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2016;47(6):e98–e169; doi: 10.1161/STR.0000000000000098.
 
23.
Boyd LA, Quaney BM, Pohl PS, Winstein CJ. Learning implicitly: effects of task and severity after stroke. Neurorehabil Neural Repair. 2007;21(5):444–454; doi: 10.1177/1545968307300438.
 
24.
Cohen J. Statistical power analysis for the behavioral sciences. New York: Lawrence Erlbaum Associates; 1988.
 
25.
De Paiva Silva FP, Sbeghen Ferreira de Freitas SM, da Silva Comenalle E, Alouche SR. Uncertainty in aiming movements and its association to hand function. Motriz Rev Educ Fis. 2015;21(3):222–229; doi: 10.1590/S1980-65742015000300001.
 
26.
Coqueiro PR, Sbeghen Ferreira de Freitas SM, Mendes Assunção e Silva C, Alouche SR. Effects of direction and index of difficulty on aiming movements after stroke. Behav Neurol. 2014;2014:909182; doi: 10.1155/2014/909182.
 
27.
Bernhard CG, Bohm E. Monosynaptic corticospinal activation of fore limb motoneurones in monkeys (Macaca mulatta). Acta Physiol Scand. 1954;31(2–3):104–112; doi: 10.1111/j.1748-1716.1954.tb01118.x.
 
28.
Merbah S, Meulemans T. Learning a motor skill: effects of blocked versus random practice. A review. Psychol Belg. 2011;51(1):15–48; doi: 10.5334/pb-51-1-15.
 
29.
Schilder P. The image and appearance of the human body. New York: International University Press; 1950.
 
30.
Ayres AJ. Development of body scheme in children. Am J Occup Ther. 1961;15:99–102.
 
31.
Brunt D, Housner LD, McElroy J. Manipulation of dominant/non-dominant hand and ipsilateral/contralateral movement as a function of response organization in fourth grade children. Percept Mot Skills. 1983;56(1):331–334; doi: 10.2466/pms.1983.56.1.331.
 
32.
Klapp ST. Motor response programming during simple choice reaction time: the role of practice. J Exp Psychol Hum Percept Perform. 1995;21(5):1015–1027; doi: 10.1037/0096-1523.21.5.1015.
 
33.
Janacsek K, Nemeth D. Implicit sequence learning and working memory: correlated or complicated? Cortex. 2013;49(8):2001–2006; doi: 10.1016/j.cortex.2013.02.012.
 
34.
Nepveu J-F, Thiel A, Tang A, Fung J, Lundbye-Jensen J, Boyd LA, et al. A single bout of high-intensity interval training improves motor skill retention in individuals with stroke. Neurorehabil Neural Repair. 2017;31(8):726–735; doi: 10.1177/1545968317718269.
 
eISSN:1899-1955
Journals System - logo
Scroll to top