REVIEW PAPER
The Nordbord usefulness in football: a systematic review of the pros and cons
 
More details
Hide details
1
Juventus Academy Nanjing, Nanjing, China
 
2
Reliance Foundation Young Champs, Navi Mumbai, India
 
3
S.C. Kiyovu Sports, Rwanda (professional football club, tier 1)
 
4
Department of Neurology, Carrick Institute, Cape Canaveral, Forida, USA
 
5
Faculty of Physical Education, Ningbo University, Ningbo, Zhejiang, China
 
6
Centre for Mental Health Research in Association, University of Cambridge, Cambridge, UK
 
 
Submission date: 2023-12-26
 
 
Acceptance date: 2024-05-21
 
 
Publication date: 2024-06-28
 
 
Corresponding author
Dimitrios Koukouras   

Technical Director of Juventus Academy Nanjing
 
 
Hum Mov. 2024;25(2):64-85
 
KEYWORDS
TOPICS
ABSTRACT
Since 2016 and the introduction of Nordbord to the world, a variety of sports and disciplines have used the device to inform everyday decision-making, such as post-match recovery, to assess players’ readiness for the next fixture and mitigate the risk of injury. The objective of this paper was to examine the use of Nordbord across all football (soccer) levels and present practical recommendations concerning its application and potential limitations as a tool for measuring eccentric strength of the knee flexors (ESKF) incorporating the critical role of hamstring eccentric strength (HES) in injury prevention and performance enhancement. Twenty-nine studies were identified and met the inclusion criteria. The review shows that although Nordbord has potential as a practical and cost-effective method of measuring HES, the findings on the validity and reliability are conflicting. Furthermore, the study highlights several topics where the Nordbord could be recommended to stakeholders, as a tool to assess post-match recovery, prevention of hamstring injuries, and rehabilitation, as well as used as a performance indicator for balance, sprint, and change of direction performance. However, the review showed that ESKFs could be affected by fatigue and training volume, therefore, there is a need for normative values for different ages, genders, levels, and positions. Furthermore, the need for standardized methods and normalized data gathering, are argued as pivotal points to establish the Nordbord as a valuable alternative to the isokinetic dynamometer.
 
REFERENCES (94)
1.
Ekstrand J, Hägglund M, Waldén M. Epidemiology of muscle injuries in professional football (soccer). Am J Sports Med. 2011;39(6):1226–32; doi: 10.1177/0363546510395879.
 
2.
Ekstrand J, Lee JC, Healy JC. MRI findings and return to play in football: a prospective analysis of 255 hamstring injuries in the UEFA Elite Club Injury Study. Br J Sports Med. 2016;50(12):738–73; doi: 10.1136/bjsports-2016-095974.
 
3.
Taberner M, Haddad FS, Dunn A, Newall A, Parker L, Betancur E, Cohen DD. Managing the return to sport of the elite footballer following semimembranosus reconstruction. BMJ Open Sport Exerc Med. 2020;6(1):e000898; doi: 10.1136/bmjsem-2020-000898.
 
4.
Read PJ, Oliver JL, De Ste Croix MBA, Myer GD, Lloyd RS. An audit of injuries in six english professional soccer academies. J Sports Sci. 2018; 36(13):1542–8; doi: 10.1080/02640414.2017.14 02535.
 
5.
Vicens-Bordas J, Esteve E, Fort-Vanmeerhaeghe A, Casals M, Bandholm T, Ishoi L, Opar D, Shield A, Thorborg K. 160 Eccentric hamstring strength and sprinting performance changes during the off-season in Spanish footballers. Br J Sports Med. 2021:55(Suppl 1):A63.2-A64; doi: 10.1136/bjsports-2021-ioc.148.
 
6.
Brukner P. Hamstring injuries: prevention and treatment-an update. Br J Sports Med. 2015;49(19):1241–4; doi: 10.1136/bjsports-2014-094427.
 
7.
Opar DA, Williams MD, Timmins RG, Hickey J, Duhig SJ, Shield AJ. Eccentric hamstring strength and hamstring injury risk in Australian footballers. Med Sci Sports Exerc. 2015;47(4):857–65; doi: 10.1249/MSS.0000000000000465.
 
8.
Bourne MN, Opar DA, Williams MD, Shield AJ. Eccentric knee flexor strength and risk of hamstring injuries in rugby union: a prospective study. Am J Sports Med. 2015;43(11):2663–70; doi: 10.1177/0363546515599633.
 
9.
Valle X, L Tol J, Hamilton B, Rodas G, Malliaras P, Malliaropoulos N, Rizo V, Moreno M, Jardi J. Hamstring muscle injuries, a rehabilitation protocol purpose. Asian J Sports Med. 2015;6(4):e25411; doi: 10.5812/asjsm.25411.
 
10.
Mendiguchia J, Martinez-Ruiz E, Edouard P, Morin J-B, Martinez-Martinez F, Idoate F, Mendez- Villanueva A. A multifactorial, criteria-based progressive algorithm for hamstring injury treatment. Med Sci Sports Exerc. 2017;49(7):1482–92; doi: 10.1249/MSS.0000000000001241.
 
11.
Tyler TF, Schmitt BM, Nicholas SJ, McHugh MP. Rehabilitation after hamstring-strain injury emphasizing eccentric strengthening at long muscle lengths: results of long-term follow-up. J Sport Rehabil. 2017;26(2):131–40; doi: 10.1123/jsr.2015-0099.
 
12.
Macdonald B, McAleer S, Kelly S, Chakraverty R, Johnston M, Pollock N. Hamstring rehabilitation in elite track and field athletes: applying the British Athletics Muscle Injury Classification in clin ical practice. Br J Sports Med. 2019;53(23):1464–73; doi: 10.1136/bjsports-2017-098971.
 
13.
Palermi S, Massa B, Vecchiato M, Mazza F, De Blasiis P, Romano AM, Di Salvatore MG, Della Valle E, Tarantino D, Ruosi C, Sirico F. Indirect structural muscle injuries of lower limb: rehabilitation and therapeutic exercise. J Funct Morphol Kinesiol. 2021;6(3):75; doi: 10.3390/jfmk6030075.
 
14.
Rudisill SS, Kucharik MP, Varady NH, Martin SD. Evidence-based management and factors associated with return to play after acute hamstring injury in athletes: a systematic review. Orthop J Sports Med. 2021;9(11):23259671211053830; oi: 10.1177/23259671211053833.
 
15.
Hickey JT, Opar DA, Weiss LJ, Heiderscheit BC. Hamstring strain injury rehabilitation. J Athl Train. 2022;57(2):125–35; doi: 10.4085/1062-6050-0707.20.
 
16.
Stastny P, Lehnert M, Tufano JJ. Muscle imbalances: testing and training functional eccentric hamstring strength in athletic populations. J Vis Exp. 2018;(135); doi: 10.3791/57508; doi: 10.3791/57508.
 
17.
Mendiguchia J, Martinez-Ruiz E, Morin JB, Samozino P, Edouard P, Alcaraz PE, Esparza-Ros F, Mendez-Villanueva A. Effects of hamstring-emphasized neuromuscular training on strength and sprinting mechanics in football players. Scand J Med Sci Sports. 2015;25(6):e621–9; doi: 10.1111/ sms.12388.
 
18.
Jones S, Mullen R, Clair Z, Wrigley R, Andersen TE, Williams M. Field based lower limb strength tests provide insight into sprint and change of direction ability in academy footballers. Scand J Med Sci Sports. 2021;31(12):2178–86; doi: 10.1111/sms.14039.
 
19.
Mjølsnes R, Arnason A, Østhagen T. A 10-week randomized trial comparing eccentric vs. concentric hamstring strength training in well-trained soccer players. Scand J Med Sci Sports 14(5):311–7; doi: 10.1046/j.1600-0838.2003.367.x.
 
20.
Ishøi L, Hölmich P, Aagaard P, Thorborg K, Bandholm T, Serner A. Effects of the Nordic hamstring exercise on sprint capacity in male football players: a randomized controlled trial. J Sports Sci. 2018;36(14):1663–72; doi: 10.1080/02640414.2017.1409609.
 
21.
Siddle J, Greig M, Weaver K, Page RM, Harper D, Brogden CM. Acute adaptations and subsequent preservation of strength and speed measures following a Nordic hamstring curl intervention: a randomised controlled trial. J Sports Sci. 2019;37(8):911–20; doi: 10.1080/02640414.2018.1535786.
 
22.
Bautista IJ, Vicente-Mampel J, Baraja-Vegas L, Segarra V, Martín F, Van Hooren B. The effects of the Nordic hamstring exercise on sprint performance and eccentric knee flexor strength: a systematic review and meta-analysis of intervention studies among team sport players. J Sci Med Sport. 2021;24(9):931–8; doi: 10.1016/j.jsams.2021.03.009.
 
23.
Small K, McNaughton L, Greig M, Lovell R. Effect of timing of eccentric hamstring strengthening exercises during soccer training: implications for muscle fatigability. J Strength Cond Res. 2009; 23(4):1077–83; doi: 10.1519/JSC.0b013e318194df5c.
 
24.
Stark T, Walker B, Phillips JK, Fejer R, Beck R. Handheld dynamometry correlation with the gold standard isokinetic dynamometry: a systematic review. PM R. 2011;3(5):472–9; doi: 10.1016/j.pmrj.2010.10.025.
 
25.
Katoh M, Hiiragi Y, Uchida M. Validity of isometric muscle strength measurements of the lower limbs using a handheld dynamometer and belt: a comparison with an isokinetic dynamometer. J Phys Therapy Sci. 2011;23(4):553–7; doi: 10.1589/jpts.23.553.
 
26.
Ieiri A, Tushima E, Ishida K, Inoue M, Kanno T, Masuda T. Reliability of measurements of hip abduction strength obtained with a handheld dynamometer. Physiother Theory Pract. 2015;31(2):146–52; doi: 10.3109/09593985.2014.960539.
 
27.
Muff G, Dufour S, Meyer A, Severac F, Favret F, Geny B, Lecocq J, Isner-Horobeti M-E. Comparative assessment of knee extensor and flexor muscle strength measured using a handheld vs. isokinetic dynamometer. J Phys Therapy Sci. 2016; 28(9):2445–51; doi: 10.1589/jpts.28.2445.
 
28.
Bohannon RW. Test-retest reliability of handheld dynamometry during a single session of strength assessment. Phys Ther. 1986;66(2):206–9; doi: 10.1093/ptj/66.2.206.
 
29.
Whiteley R, Jacobsen P, Prior S, Skazalski C, Otten R, Johnson A. Correlation of isokinetic and novel handheld dynamometry measures of knee flexion and extension strength testing. J Sci Med Sport. 2012;15(5):444–50; doi: 10.1016/j.jsams.2012.01.003.
 
30.
Chamorro C, Armijo-Olivo S, De la Fuente C, Fuentes J, Javier Chirosa L. Absolute reliability and concurrent validity of hand held dynamometry and isokinetic dynamometry in the hip, knee and ankle joint: systematic review and meta-analysis. Open Med. 2017;12:359–75; doi: 10.1515/med-2017-0052.
 
31.
Mellor L. NordBord: EPL, NBA and NFL clubs sign up for Brisbane invention that predicts hamstring injuries. abc.net.au. 2016. Available 17.02. 2016 from: https://www.abc.net.au/news/20... nfl-nba-sign-up-for-brisbane-nordbord/7177640? utm_campaign=abc_news_web&utm_content= link&utm_medium=content_shared&utm_source =abc_news_web
 
32.
Rains B. The NordBord is seeing success in preventing hamstring injuries and saving teams fortunes. Sports Business J. 2016. Available 23.02. 2016 from: https://www.sportsbusinessjour.... com/Daily/Issues/2016/02/23/Technology/thenordbord- is-seeing-success-in-preventing-hamstring- injuries-and-saving-teams-fortunes.aspx.
 
33.
VALD performance. VALD Performance Human Measurement Technologies. 2020. Available 01.10. 2023 from: http://valdperformance.com.
 
34.
VALD performance. VALD performance. Available 2024 from: https://valdperformance.com.
 
35.
Opar DA, Piatkowski T, Williams MD, Shield AJ. A novel device using the Nordic hamstring exercise to assess eccentric knee flexor strength: a reliability and retrospective injury study. J Orthop Sports Phys Ther. 2013;43(9):636–40; doi: 10.2519/jospt.2013.4837.
 
36.
Torpey D, Murray E, Hughes T, Sergeant J, Callaghan M. The reliability of and agreement between devices used to measure eccentric hamstring strength: a systematic review protocol. Syst Rev. 2022;11(1):204; doi: 10.1186/s13643-022-02070-8.
 
37.
Green B, Bourne MN, Pizzari T. Isokinetic strength assessment offers limited predictive validity for detecting risk of future hamstring strain in sport: a systematic review and meta-analysis. Br J Sports Med. 2018;52(5):329–36; doi: 10.1136/bjsports- 2017-098101.
 
38.
Miralles-Iborra A, Elvira JLL, Urban T, Calado A, Del Coso J, Moreno-Pérez V. Agreement between isokinetic eccentric hamstring strength, Nordic hamstring strength and Nordic break-point angle in a sample of trained and healthy individuals. Eur J Sport Sci. 2023;23(2):155–64; doi: 10.1080/17461391.2021.2014984.
 
39.
Sconce E, Jones P, Turner E, Comfort P, Graham- Smith P. The validity of the Nordic hamstring lower for a field-based assessment of eccentric hamstring strength. J Sport Rehabil. 2015;24(1):13–20; doi: 10.1123/JSR.2013-0097.
 
40.
Cotter R. A Review of the NordBord Hamstring Testing System. Available 05.01.2017 from: https:// simplifaster.com/articles/review-nordbordhamstring- testing-system/.
 
41.
Luchner R, Steidl-Müller L, Niedermeier M, Raschner C. Maximal isometric or eccentric hamstring strength-which test modality might be more suitable for assessments in youth alpine ski racers? Int J Environ Res Public Health. 2021;18(4); doi: 10.3390/ijerph18042138.
 
42.
Buchheit M, Cholley Y, Nagel M, Poulos N. The effect of body mass on eccentric knee-f lexor strength assessed with an instrumented Nordic hamstring device (Nordbord) in football players. Int J Sports Physiol Perform. 2016;11(6):721–6; doi: 10.1123/ijspp.2015-0513.
 
43.
Wik EH, Auliffe SM, Read PJ. Examination of physical characteristics and positional differences in professional soccer players in Qatar. Sports. 2018;7(1); doi: 10.3390/sports7010009.
 
44.
Soós I, Borysławski K, Boraczyński M, Ihasz F, Podstawski R. Anthropometric and physiological profiles of hungarian youth male soccer players of varying ages and playing positions: a multidimensional assessment with a critical approach. Int J Environ Res Public Health. 2022;19(17); doi: 10.3390/ijerph191711041.
 
45.
Sherwood CN, Read P, Till K, Paxton K, Keenan J, Turner AN. Original scientific research study strength, power and speed characteristics in elite academy soccer. J Australian Strength Cond. 2021;29(2):13–22.
 
46.
Claudino JG, Cardoso Filho CA, Bittencourt NFN, Gonçalves LG, Couto CR, Quintão RC, Reis GF, de Oliveira Júnior O, Amadio AC, Boullosa D, Cerca Serrão J. Eccentric strength assessment of hamstring muscles with new technologies: a systematic review of current methods and clinical implications. Sports Med Open. 2021;7(1):10; doi: 10.1186/s40798-021-00298-7.
 
47.
Ogborn DI, Bellemare A, Bruinooge B, Brown H, McRae S, Leiter J. Comparison of common methodologies for the determination of knee flexor muscle strength. Int J Sports Phys Ther. 2021;16(2):350–9; doi: 10.26603/001c.21311.
 
48.
Bishop C, Manuel J, Drury B, Beato M, Turner A. Assessing eccentric hamstring strength using the Nordbord: between-session reliability and interlimb asymmetries in professional soccer players. J Strength Cond Res. 2022;36(9):2552–7; doi: 10.1519/JSC.0000000000004303.
 
49.
Rhodes D, Greig M, Jeffrey J, Alexander J. Quantification of eccentric hamstrings strength in elite academy footballers: considerations for assessment. Cent Eur J Sport Sci Med. 2022;39(3):5–16; doi: 10.18276/cej.2022.3-01.
 
50.
Fernandes JFT, Moran J, Clarke H, Drury B. The influence of maturation on the reliability of the Nordic hamstring exercise in male youth footballers. Transl Sports Med. 2020;3(2):148–53; doi: 10.1002/tsm2.124.
 
51.
Read PJ, McAuliffe S, Bishop C, Oliver JL, Graham- Smith P, Farooq MA. Asymmetry thresholds for common screening tests and their effects on jump performance in professional soccer players. J Athl Train. 2021;56(1):46–53; doi: 10.4085/1062-6050-0013.20.
 
52.
Cuthbert M, Comfort P, Ripley N, McMahon JJ, Evans M, Bishop C. Unilateral vs. bilateral hamstring strength assessments: comparing reliability and inter-limb asymmetries in female soccer players. J Sports Sci. 2021;39(13):1481–8; doi: 10.1080/02640414.2021.
 
53.
O’Brien J, Browne D, Earls D, Lodge C. Reliability of the hip extension lower exercise as a measure of eccentric hamstring strength. Biomechanics. 2022;2:1–6; doi: 10.3390/biomechanics2010001.
 
54.
Amundsen R, Heimland JS, Thorarinsdottir S, Møller M, Bahr R. Effects of high and low training volume with the nordic hamstring exercise on hamstring strength, jump height, and sprint performance in female football players: a randomised trial. Transl Sports Med. 2022;2022:7133928; doi: 10.1155/2022/7133928.
 
55.
Harøy J, Thorborg K, Serner A, Bjørkheim A, Rolstad LE, Hölmich P, Bahr R, Andersen TE. Including the Copenhagen adduction exercise in the FIFA 11+ provides missing eccentric hip adduction strength effect in male soccer players: a randomized controlled trial. Am J Sports Med. 2017; 45(13):3052–9; doi: 10.1177/0363546517720194.
 
56.
Lacome M, Avrillon S, Cholley Y, Simpson BM, Guilhem G, Buchheit M. Hamstring eccentric strengthening program: does training volume matter? Int J Sports Physiol Perform. 2020;15:81–90; doi: 10.1123/ijspp.2018-0947.
 
57.
Quiceno C, Mantilla A, Iván J, Samudio MA. Profile of the muscular strength of hamstring in soccer players of the Colombian Professional League monitored with Nordbord technology [in Spanish]. Kronos. 2020:19(2).
 
58.
Quiceno C, Mantilla JIA, Samudio MA, Del Castillo D. Effect of an injury prevention program on the muscular strength of colombian professional female soccer players [in Spanish]. RICCAFD. 2021;10(2):1–17; doi: 10.24310/riccafd.2021.v10i2.11323.
 
59.
Drury B, Green T, Ramirez-Campillo R, Moran J. Influence of maturation status on eccentric hamstring strength improvements in youth male soccer players after the Nordic hamstring exercise. Int J Sports Physiol Perform. 2020;1–7; doi: 10.1123/ijspp.2019-0184.
 
60.
Jones S, Clair Z, Wrigley R, Mullen R, Andersen TE, Williams M. Strength development and noncontact lower limb injury in academy footballers across age groups. Scand J Med Sci Sports. 2021; 31(3):679–90; doi: 10.1111/sms.13889.
 
61.
Opar DA, Williams MD, Timmins RG, Hickey J, Duhig SJ, Shield AJ. The effect of previous hamstring strain injuries on the change in eccentric hamstring strength during pre-season training in elite Australian footballers. Am J Sports Med. 2015;43(2):377–84; doi: 10.1177/0363546514556638.
 
62.
Kumagai K, Abe T, Brechue WF, Ryushi T, Takano S, Mizuno M. Sprint performance is related to muscle fascicle length in male 100-m sprinters. J Appl Physiol. 2000;88(3):811–6; doi: 10.1152/ jappl.2000.88.3.811.
 
63.
Mendiguchia J, Conceição F, Edouard P, Fonseca M, Pereira R, Lopes H, Morin J-B, Jiménez- Reyes P. Sprint versus isolated eccentric training: Comparative effects on hamstring architecture and performance in soccer players. PLoS One. 2020;15(2):e0228283; doi: 10.1371/journal.pone.0228283.
 
64.
Behan F, Vermeulen R, Whiteley R, Timmins R. The dose response of Nordic hamstring exercises on biceps femoris long head architecture and eccentric hamstring strength. J Sci Med Sport. 2019; 22(Suppl 2):71–2; doi.org/10.1016/j.jsams.2019.08.284.
 
65.
Freeman B, James L, Opar D, Tapley S, Young W. A comparison of acceleration and maximum speed sprint training on eccentric hamstring strength and hamstring muscle architecture. J Sci Med Sport. 2021;24(Suppl 1):6–7; doi: 10.1016/j.jsams.2021.09.025.
 
66.
Brogden CM, Gough L, Kelly A. The effects of a soccer-specific fitness test on eccentric knee f lexor strength. J Sport Rehabil. 2020;30(4):568–72; doi: 10.1123/jsr.2019-0532.
 
67.
Madison G, Patterson SD, Read P, Howe L, Waldron M. Effects of small-sided game variation on changes in hamstring strength. J Strength Cond Res. 2019;33(3):839–45; doi: 10.1519/JSC.0000000000002955.
 
68.
Shah S, Collins K, Macgregor LJ. The influence of weekly sprint volume and maximal velocity exposures on eccentric hamstring strength in professional football players. Sports. 2022;10(8); doi: 10.3390/sports10080125.
 
69.
Brünn D, Líška D, Švantner R, Franek V, Sýkora J, Pupiš M. Association between hamstrings eccentric strength and sprint performance in football players. Sport Mont. 2022;20(2):103–9; doi: 10.26773/smj.220616.
 
70.
Rhodes D, Jeffrey J, Maden-Wilkinson J, Reedy A, Morehead E, Kiely J, Birdsall D, Carling C, Alexander J. The relationship between eccentric hamstring strength and dynamic stability in elite academy footballers. Sci Med Footb. 2021;5(1):48–54; doi: 10.1080/24733938.2020.1782458.
 
71.
Draganidis D, Chatzinikolaou A, Avloniti A, Barbero- Álvarez JC, Mohr M, Malliou P, Gourgoulis, Deli CK, Douroudos II, Margonis K, Gioftsidou A, Flouris AD, Jamurtas AZ, Koutedakis Y, Fatouros IG. Recovery kinetics of knee flexor and extensor strength after a football match. PLoS One. 2015; 10(6):e0128072; doi: 10.1371/journal.pone.012 8072.
 
72.
Matthews MJ, Heron K, Todd S, Tomlinson A, Jones P, Delextrat A, Cohen DD. Strength and endurance training reduces the loss of eccentric hamstring torque observed after soccer specific fatigue. Phys Ther Sport. 2017;25:39–46; doi: 10.1016/j.ptsp.2017.01.006.
 
73.
Kakavas G, Kekelekis A. 310 The effect of a 90-min soccer match and fatigue on eccentric hamstring strength: implications for hamstring injury risk. Br J Sports Med. 2021;55(Suppl 1):A119; doi: 10.1136/bjsports-2021-IOC.284.
 
74.
Salter J, Cresswell R, Forsdyke D. The impact of simulated soccer match-play on hip and hamstring strength in academy soccer players. Sci Med Footb. 2022;6(4):465–72; doi: 10.1080/24733938.2021.1973080.
 
75.
Greig M. Concurrent changes in eccentric hamstring strength and knee joint kinematics induced by soccer-specific fatigue. Phys Ther Sport. 2019;37:21–6; doi: 10.1016/j.ptsp.2019.02.003.
 
76.
Dewig DR, Goodwin JS, Pietrosimone BG, Blackburn JT. Associations among eccentric hamstrings strength, hamstrings stiffness, and jump-landing biomechanics. J Athl Train. 2020;55(7):717–23; doi: 10.4085/1062-6050-151-19.
 
77.
Isik A, Unlu G, Batin Gozubuyuk O, Aslanyurek T, Bereceli C. The relationship between previous lower extremity injury, body weight and bilateral eccentric hamstring strength imbalance in young soccer players. Montenegrin J Sports Sci Med. 2018;7(2); doi: 10.26773/mjssm.180904.
 
78.
Collings TJ, Diamond LE, Barrett RS, Timmins RG, Hickey JT, DU Moulin WS, Morgan MD, Beerworth KA, Bourne MN. Strength and biomechanical risk factors for non-contact ACL injury in elite female footballers: a prospective study. Med Sci Sports Exerc. 2022;54(8):1242–51; doi: 10.1249/ MSS.0000000000002908.
 
79.
Haller N, Blumkaitis JC, Strepp T, Schmuttermair A, Aglas L, Simon P, Neuberger E, Kranzinger C, Kranzinger S, O’Brien J, Ergoth B, Raffetseder S, Fail C, Düring M, Stöggl T. Comprehensive training load monitoring with biomarkers, performance testing, local positioning data, and questionnaires – first results from elite youth soccer. Front Physiol. 2022;13:1000898; doi: 10.3389/fphys.2022.1000898.
 
80.
Lee JWY, Mok K-M, Chan HCK, Yung PSH, Chan K-M. Eccentric hamstring strength deficit and poor hamstring-to-quadriceps ratio are risk factors for hamstring strain injury in football: a prospective study of 146 professional players. J Sci Med Sport. 2018;21(8):789–93; doi: 10.1016/ j.jsams.2017.11.017.
 
81.
Opar D, Williams M, Timmins R, Hickey J, Duhig S, Shield A. Eccentric hamstring strength during the nordic hamstring exercises is a risk factor for hamstring strain injury in elite Australian football: a prospective cohort study. Br J Sports Med. 2014;48(7):647–8; doi: 10.1136/bjsports-2014-093494.232.
 
82.
Chebbi S, Chamari K, Van Dyk N, Gabbett T, Tabben M. Hamstring injury prevention for elite soccer players: a real-world prevention program showing the effect of players’ compliance on the outcome. J Strength Cond Res. 2022;36(5):1383–8; doi: 10.1519/JSC.0000000000003505.
 
83.
Petersen J, Thorborg K, Nielsen MB, Budtz-Jørgensen E, Hölmich P. Preventive effect of eccentric training on acute hamstring injuries in men’s soccer: a cluster-randomized controlled trial. Am J Sports Med. 2011;39(11):2296–303; doi: 10.1177/0363546511419277.
 
84.
Giakoumis M, Pollock N, Mias E, McAleer S, Kelly S, Brown F, Wootten M, Macdonald B. Ec centric hamstring strength in elite track and field athletes on the British Athletics world class performance program. Phys Ther Sport. 2020;43:217– 23; doi: 10.1016/j.ptsp.2020.03.008.
 
85.
van der Horst N, van de Hoef S, Reurink G, Huisstede B, Backx F. Return to play after hamstring injuries: a qualitative systematic review of definitions and criteria. Sports Med. 2016;46(6):899–912; doi: 10.1007/s40279-015-0468-7.
 
86.
Alexander J, Carling C, Rhodes D. Utilisation of performance markers to establish the effectiveness of cold-water immersion as a recovery modality in elite football. Biol Sport. 2022;39(1):19–29; doi: 10.5114/biolsport.2021.103570.
 
87.
Buckthorpe M, Wright S, Bruce-Low S, Nanni G, Sturdy T, Gross AS, Bowen L, Styles B, Della Villa S, Davison M, Gimpel M. Recommendations for hamstring injury prevention in elite football: translating research into practice. Br J Sports Med. 2019;53(7):449–56; doi: 10.1136/bjsports-2018-099616.
 
88.
Rhodes D. The Temporal Pattern of Recovery of Eccentric Hamstring Strength and Dynamic Stability in Elite Footballers. 2017. Edge Hill University. Available 06.11.2017 from https://research. edgehill.ac.uk/ws/portalfiles/portal/20512569/ Rhodes_David_Final_Thesis_2017.11.06_.pdf.
 
89.
Alexander J, Jeffery J, Rhodes D. Recovery profiles of eccentric hamstring strength in response to cooling and compression. J Bodyw Mov Ther. 2021;27:9–15; doi: 10.1016/j.jbmt.2021.03.010.
 
90.
Barnes C, Archer DT, Hogg B, Bush M, Bradley PS. The evolution of physical and technical performance parameters in the English Premier League. Int J Sports Med. 2014;35(13):1095–100; doi: 10.1055/s-0034-1375695.
 
91.
Haugen T, Tønnessen E, Hisdal J, Seiler S. The role and development of sprinting speed in soccer. Int J Sports Physiol Perform. 2014;9(3):432–41; doi: 10.1123/ijspp.2013-0121.
 
92.
Wallace JL, Norton KI. Evolution of World Cup soccer final games 1966–2010: game structure, speed and play patterns. J Sci Med Sport. 2014; 17(2):223–8; doi: 10.1016/j.jsams.2013.03.016.
 
93.
Faude O, Koch T, Meyer T. Straight sprinting is the most frequent action in goal situations in professional football. J Sports Sci. 2012;30(7):625–31; doi: 10.1080/02640414.2012.665940.
 
94.
Külah E, Alemdar H. Quantifying the value of sprints in elite football using spatial cohesive networks. Chaos Solitons Fractals. 2020;139:110306; doi: 10.1016/j.chaos.2020.110306.
 
eISSN:1899-1955
Journals System - logo
Scroll to top