ORIGINAL PAPER
Effects of cinnamon extract supplementation on creatine kinase activity in badminton athletes
More details
Hide details
1
State University of Jakarta, Jakarta, Indonesia
2
Bandung Institute of Technology, Bandung, Indonesia
3
State University of Makassar, Makassar, Indonesia
Submission date: 2019-08-01
Acceptance date: 2020-01-02
Publication date: 2020-04-22
Hum Mov. 2020;21(4):102-110
KEYWORDS
TOPICS
ABSTRACT
Purpose:
Cinnamon extract, which is the result of extraction from the bark of the genus Cinnamomum, belonging to the Lauraceae family, which grows in several continents, such as Asia, Australia, and America (South America), has made researchers enthusiastic to apply it as an athlete supplement. The purpose of this study was to examine whether 6-week daily consumption of cinnamon extract would affect anaerobic performance and reduce creatine kinase activity in badminton athletes.
Methods:
Overall, 30 male badminton athletes (aged 19–21 years) were enrolled and recruited into the study; 15 participants were randomly assigned to the cinnamon group and the other group was a placebo group. Both groups underwent pre- and post-supplementation tests, which covered anaerobic capacity (20-m sprint test) and physical fitness (vertical jump, agility T-test, and sit-ups). A 5-minute rest was applied between the tests. Blood serum was analysed with the use of a chemistry auto-analyser (Cobas Mira S, USA) with the kinetic method to measure creatine kinase activity before and after the tests.
Results:
For the post-test creatine kinase activity, the results showed a significant main effect for group (p = 0.022) and time (p = 0.018) and significant time × group interactions (p = 0.013). The T-test revealed a significant two-way interaction for time × group (p = 0.007). Additionally, there was a significant main effect for group (p = 0.025) and time (p = 0.003).
Conclusions:
We demonstrated that cinnamon extract could reduce creatine kinase activity and improve agility T-test performance in badminton athletes.
REFERENCES (35)
1.
Kwan M, Cheng CL, Tang WT, Rasmussen J. Measurement of badminton racket deflection during a stroke. Sports Eng. 2010;12(3):143–153; doi: 10.1007/s12283- 010-0040-5.
2.
Lo D, Stark K. Sports performance series: the badminton overhead shot. Natl Strength Cond J. 1991;13(5):6– 13; doi: 10.1519/0744-0049(1991)013<0006:tbos>2. 3.co;2.
3.
Bravo-Sánchez A, Abián-Vicén J, Jiménez F, Abián P. Influence of badminton practice on calcaneal bone stiffness and plantar pressure. Phys Sportsmed. 2020;48(1): 98–104; doi: 10.1080/00913847.2019.1635050.
4.
Feizabadi MS, Khabiri M, Hamidi M. The relationship between the success of countries at the Guangzhou 2010 Summer Asian Games and demo-economic factors. Procedia Soc Behav Sci. 2013;82:369–374; doi: 10.1016/j.sbspro.2013.06.277.
5.
Rampichini S, Limonta E, Pugliese L, Cè E, Bisconti AV, Gianfelici A, et al. Heart rate and pulmonary oxygen uptake response in professional badminton players: comparison between on-court game simulation and laboratory exercise testing. Eur J Appl Physiol. 2018; 118(11):2339–2347; doi: 10.1007/s00421-018-3960-6.
6.
Fuchs M, Faude O, Wegmann M, Meyer T. Critical evaluation of a badminton-specific endurance test. Int J Sport Physiol Perform. 2014;9(2):249–255; doi: 10.1123/ ijspp.2012-0387.
7.
Phomsoupha M, Laffaye G. The science of badminton: game characteristics, anthropometry, physiology, visual fitness and biomechanics. Sports Med. 2015; 45(4):473–495; doi: 10.1007/s40279-014-0287-2.
8.
Lees A. Science and the major racket sports: a review. J Sports Sci. 2003;21(9):707–732; doi: 10.1080/ 0264041031000140275.
9.
Faude O, Meyer T, Rosenberger F, Fries M, Huber G, Kindermann W. Physiological characteristics of badminton match play. Eur J Appl Physiol. 2007;100(4): 479–485; doi: 10.1007/s00421-007-0441-8.
10.
Tomlin DL, Wenger HA. The relationship between aerobic fitness and recovery from high intensity intermittent exercise. Sports Med. 2001;31(1):1–11; doi: 10.2165/ 00007256-200131010-00001.
11.
Kwan M, Andersen MS, Zee M, Rasmussen J. Dynamic model of a badminton stroke. In: Estivalet M, Brisson P (eds.), The engineering of sport 7. Paris: Springer; 2008; 563–571.
12.
Deka P, Berg K, Harder J, Batelaan H, McGrath M. Oxygen cost and physiological responses of recreational badminton match play. J Sports Med Phys Fitness. 2017;57(6):760–765; doi: 10.23736/S0022-4707.16. 06319-2.
13.
Pasiakos SM, Lieberman HR, McLellan TM. Effects of protein supplements on muscle damage, soreness and recovery of muscle function and physical performance: a systematic review. Sports Med. 2014;44(5): 655–670; doi: 10.1007/s40279-013-0137-7.
14.
Baumert P, Lake MJ, Stewart CE, Drust B, Erskine RM. Genetic variation and exercise-induced muscle damage: implications for athletic performance, injury and ageing. Eur J Appl Physiol. 2016;116(9):1595–1625; doi: 10.1007/s00421-016-3411-1.
15.
Braun H, Koehler K, Geyer H, Kleiner J, Mester J, Schanzer W. Dietary supplement use among elite young German athletes. Int J Sport Nutr Exerc Metab. 2009; 19(1):97–109; doi: 10.1123/ijsnem.19.1.97.
16.
Herbold NH, Visconti BK, Frates S, Bandini L. Traditional and nontraditional supplement use by collegiate female varsity athletes. Int J Sport Nutr Exerc Metab. 2004;14(5):586–593; doi: 10.1123/ijsnem.14.5.586.
17.
Amato A, Sacco A, Macchiarella A, Contrò V, Sabatino E, Galassi C, et al. Influence of nutrition and genetics on performance: a pilot study in a group of gymnasts. Hum Mov. 2017;18(3):12–16; doi: 10.1515/humo-2017- 0029.
18.
Gaamouri N, Zouhal H, Hammami M, Hackney AC, Abderrahman AB, Saeidi A, et al. Effects of polyphenol (carob) supplementation on body composition and aerobic capacity in taekwondo athletes. Physiol Behav. 2019;205:22–28; doi: 10.1016/j.physbeh.2019.03.003.
19.
Ataka S, Tanaka M, Nozaki S, Mizuma H, Mizuno K, Tahara T, et al. Effects of Applephenon® and ascorbic acid on physical fatigue. Nutrition. 2007;23(5):419– 423; doi: 10.1016/j.nut.2007.03.002.
20.
Aprikian O, Busserolles J, Manach C, Mazur A, Morand C, Davicco MJ, et al. Lyophilized apple counteracts the development of hypercholesterolemia, oxidative stress, and renal dysfunction in obese Zucker rats. J Nutr. 2002;132(7):1969–1976; doi: 10.1093/jn/132.7. 1969.
21.
Kawatra P, Rajagopalan R. Cinnamon: mystic powers of a minute ingredient. Pharmacognosy Res. 2015; 7(Suppl. 1):S1–S6; doi: 10.4103/0974-8490.157990.
22.
Islam H, Yorgason NJ, Hazell TJ. Creatine co-ingestion with carbohydrate or cinnamon extract provides no added benefit to anaerobic performance. Eur J Sport Sci. 2016;16(6):685–693; doi: 10.1080/17461391.2015. 1071877.
23.
Archer AW. Determination of cinnamaldehyde, coumarin and cinnamyl alcohol in cinnamon and cassia by high-performance liquid chromatography. J Chromatogr. 1988;447:272–276; doi: 10.1016/0021-9673(88) 90035-0.
24.
Kumar K, Issac A, Ninan E, Kuttan R, Maliakel B. Enhanced anti-diabetic activity of polyphenol-rich decoumarinated extracts of Cinnamomum cassia. J Funct Foods. 2014;10:54–64; doi: 10.1016/j.jff.2014.05.008.
25.
Suárez Rodríguez D, Del Valle Soto M. A study of intensity, fatigue and precision in two specific interval trainings in young tennis players: high-intensity interval training versus intermittent interval training. BMJ Open Sport Exerc Med. 2017;3(1):e000250; doi: 10.1136/bmjsem-2017-000250.
26.
Monks L, Seo MW, Kim HB, Jung HC, Song JK. High-intensity interval training and athletic performance in Taekwondo athletes. J Sports Med Phys Fitness. 2017;57(10):1252–1260; doi: 10.23736/S0022- 4707.17.06853-0.
27.
Miller MG, Herniman JJ, Ricard MD, Cheatham CC, Michael TJ. The effects of a 6-week plyometric traininprogram on agility. J Sports Sci Med. 2006;5(3):459– 465.
28.
Morris CE, Wessel PA, Tinius RA, Schafer MA, Maples JM. Validity of activity trackers in estimating energy expenditure during high-intensity functional training. Res Q Exerc Sport. 2019;90(3):377–384; doi: 10.1080/02701367.2019.1603989.
29.
Fayaz E, Damirchi A, Zebardast N, Babaei P. Cinnamon extract combined with high-intensity endurance training alleviates metabolic syndrome via non-canonical WNT signaling. Nutrition. 2019;65:173–178; doi: 10.1016/j.nut.2019.03.009.
30.
Op ’t Eijnde B, Ursø B, Richter EA, Greenhaff PL, Hespel P. Effect of oral creatine supplementation on human muscle GLUT4 protein content after immobilization. Diabetes. 2001;50(1):18–23; doi: 10.2337/ diabetes.50.1.18.
31.
De França Bahia Loureiro L Jr, Costa Dias MO, Cremasco FC, da Silva MG, de Freitas PB. Assessment of specificity of the Badcamp agility test for badminton players. J Hum Kinet. 2017;57:191–198; doi: 10.1515/ hukin-2017-0060.
32.
Hussain I, Bari MA. Kinematical analysis of forehand and backhand smash in badminton. Innov Syst Des Eng. 2011;2(7):20–26.
33.
Bogdanis GC, Tsoukos A, Veligekas P. Improvement of long-jump performance during competition using a plyometric exercise. Int J Sports Physiol Perform. 2017;12(2):235–240; doi: 10.1123/ijspp.2016-0116.
34.
Farrow D, Young W, Bruce L. The development of a test of reactive agility for netball: a new methodology. J Sci Med Sport. 2005;8(1):52–60; doi: 10.1016/S1440-2440 (05)80024-6.
35.
Tillin NA, Bishop D. Factors modulating post-activation potentiation and its effect on performance of subsequent explosive activities. Sports Med. 2009;39(2): 147–166; doi: 10.2165/00007256-200939020-00004.