ORIGINAL PAPER
Potential influence from lower limb preference and 1-RM on cartilage thickness
More details
Hide details
1
La Trobe Rural Health School, La Trobe University, Bendigo, Australia
Submission date: 2020-02-04
Acceptance date: 2020-05-25
Publication date: 2020-11-15
Hum Mov. 2021;22(2):9-15
KEYWORDS
TOPICS
ABSTRACT
Purpose:
The aims of this study were to assess the potential retrospective relationship between limb preference and cartilage thickness, and to determine the association between measures of strength using 1-RM tests and cartilage thickness.
Methods:
Cross-sectional retrospective design was employed. Limb preference and injury history were collected using the Waterloo Inventory followed by femoral cartilage imaging using ultrasound. 15 apparently healthy participants (11 males and four females) without musculoskeletal or neurological diseases volunteered for the study. After collection of anthropometric measures, warm-up and familiarization, participants performed 1-RM for back half-squat on a Smith machine. Ultrasound images were digitized to determine bilateral differences and femoral cartilage thickness.
Results:
Significant moderate association between the existence of a prior injury and bilateral differences in cartilage thickness (r = -0.63, p < 0.01), in favor of the preferred limb was observed. Significant moderate association between the 1-RM, as percentage of body mass, and the mean cartilage thickness between limb (r = 0.58, p = 0.049).
Conclusions:
Bilateral differences in cartilage thickness are not associated with limb preference but depend on the history of lower limb injuries. The relative load lifted during a 1-RM half-squat is associated with thicker femoral cartilages, which suggests that relative strength is an important measure of cartilage health.
REFERENCES (28)
1.
Eckstein F, Hudelmaier M, Putz R. The effects of exercise on human articular cartilage. J Anat. 2006;208(4):491–512; doi: 10.1111/j.1469-7580.2006.00546.x.
2.
Keen HI, Wakefield RJ, Conaghan PG. A systematic review of ultrasonography in osteoarthritis. Ann Rheum Dis. 2009;68(5):611–619; doi: 10.1136/ard.2008.102434.
3.
Chan WP, Lang P, Stevens MP, Sack K, Majumdar S, Stoller DW, et al. Osteoarthritis of the knee: comparison of radiography, CT, and MR imaging to assess extent and severity. Am J Roentgenol. 1991;157(4):799–806; doi: 10.2214/ajr.157.4.1892040.
4.
Naredo E, Acebes C, Möller I, Canillas F, de Agustín JJ, de Miguel E, et al. Ultrasound validity in the measurement of knee cartilage thickness. Ann Rheum Dis. 2009;68(8):1322–1327; doi: 10.1136/ard.2008.090738.
5.
Harkey MS, Blackburn JT, Davis H, Sierra-Arévalo L, Nissman D, Pietrosimone B. Ultrasonographic assessment of medial femoral cartilage deformation acutely following walking and running. Osteoarthritis Cartilage. 2017;25(6):907–913; doi: 10.1016/j.joca.2016.12.026.
6.
Mills K, Hettinga BA, Pohl MB, Ferber R. Between limb kinematic asymmetry during gait in unilateral and bilateral mild to moderate knee osteoarthritis. Arch Phys Med Rehabil. 2013;94(11):2241–2247; doi: 10.1016/j.apmr.2013.05.010.
7.
Maly T, Zahalka T, Mala L, Cech P. The bilateral strength and power asymmetries in untrained boys. Open Med. 2015;10(1):224–232; doi: 10.1515/med-2015-0034. Mokha M, Sprague PA, Gatens DR. Predicting musculoskeletal injury in National Collegiate Athletic Association Division II athletes from asymmetries and individual-test versus composite functional movement screen scores. J Athl Train. 2016;51(4):276–282; doi: 10.4085/1062-6050-51.2.07.
8.
Bishop C, Turner A, Read P. Effects of inter-limb asymmetries on physical and sports performance: a systematic review. J Sports Sci. 2018;36(10):1135–1144; doi: 10.1080/02640414.2017.1361894.
9.
Nomura M, Sakitani N, Iwasawa H, Kohara Y, Takano S, Wakimoto Y, et al. Thinning of articular cartilage after joint unloading or immobilization. An experimental investigation of the pathogenesis in mice. Osteoarthritis Cartilage. 2017;25(5):727–736; doi: 10.1016/j.joca.2016.11.013.
10.
Maldonado DC , Pereira da Silva MC, El-Razi Neto S, Rodrigues de Souza M, Rodrigues de Souza R. The effects of joint immobilization on articular cartilage of the knee in previously exercised rats. J Anat. 2013;222(5):518–525; doi: 10.1111/joa.12036.
11.
Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee I-M, et al. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc. 2011;43(7):1334–1359; doi: 10.1249/MSS.0b013e318213fefb.
12.
Sanchez-Adams J, Leddy HA, McNulty AL, O’Conor CJ, Guilak F. The mechanobiology of articular cartilage: bearing the burden of osteoarthritis. Curr Rheumatol Rep. 2014;16(10):451; doi: 10.1007/s11926-014-0451-6.
13.
Tuna S, Balcı N, Özçakar L. The relationship between femoral cartilage thickness and muscle strength in knee osteoarthritis. Clin Rheumatol. 2016;35(8):2073–2077; doi: 10.1007/s10067-016-3271-4.
14.
Cicuttini FM, Teichtahl AJ, Wluka AE, Davis S, Strauss BJG, Ebeling PR. The relationship between body composition and knee cartilage volume in healthy, middle-aged subjects. Arthritis Rheum. 2005;52(2):461–467; doi: 10.1002/art.20791.
15.
Verdijk LB, van Loon L, Meijer K, Savelberg HHCM. One-repetition maximum strength test represents a valid means to assess leg strength in vivo in humans. J Sports Sci. 2009;27(1):59–68; doi: 10.1080/02640410802428089.
16.
Braith RW, Graves JE, Leggett SH, Pollock ML. Effect of training on the relationship between maximal and submaximal strength. Med Sci Sports Exerc. 1993;25(1):132–138; doi: 10.1249/00005768-199301000-00018.
17.
Elias LJ, Bryden MP, Bulman-Fleming MB. Footedness is a better predictor than is handedness of emotional lateralization. Neuropsychologia. 1998;36(1):37–43; doi: 10.1016/s0028-3932(97)00107-3.
18.
Kilic G, Kilic E, Akgul O, Ozgocmen S. Ultrasonographic assessment of diurnal variation in the femoral condylar cartilage thickness in healthy young adults. Am J Phys Med Rehabil. 2015;94(4):297–303; doi: 10.1097/PHM.0000000000000179.
19.
Borg GAV. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377–381; doi: 10.1249/00005768-198205000-00012.
20.
Malas FÜ, Kara M, Aktekin L, Ersöz M, Özçakar L. Does vitamin D affect femoral cartilage thickness? An ultrasonographic study. Clin Rheumatol. 2014;33(9):1331–1334; doi: 10.1007/s10067-013-2432-y.
21.
Cohen J. Statistical power analysis for the behavioral sciences. New York: Lawrence Erlbaum Associates; 1988.
22.
Dancey CP, Reidy J. Statistics without maths for psychology with psychology dictionary. Harlow: Prentice Hall; 2004.
23.
Bohm S, Mersmann F, Marzilger R, Schroll A, Arampatzis A. Asymmetry of Achilles tendon mechanical and morphological properties between both legs. Scand J Med Sci Sports. 2015;25(1):e124–e132; doi: 10.1111/sms.12242.
24.
Eckstein F, Müller S, Faber SC, Englmeier K-H, Reiser M, Putz R. Side differences of knee joint cartilage volume, thickness, and surface area, and correlation with lower limb dominance – an MRI-based study. Osteoarthritis Cartilage. 2002;10(12):914–921; doi: 10.1053/joca.2002.0843.
25.
Sadeghi H, Allard P, Prince F, Labelle H. Symmetry and limb dominance in able-bodied gait: a review. Gait Posture. 2000;12(1):34–45; doi: 10.1016/s0966-6362(00)00070-9.
26.
McGrath TM, Waddington G, Scarvell JM, Ball NB, Creer R, Woods K, et al. The effect of limb dominance on lower limb functional performance – a systematic review. J Sports Sci. 2016;34(4):289–302; doi: 10.1080/02640414.2015.1050601.
27.
Muthuri SG, McWilliams DF, Doherty M, Zhang W. History of knee injuries and knee osteoarthritis: a metaanalysis of observational studies. Osteoarthritis Cartilage. 2011;19(11):1286–1293; doi: 10.1016/j.joca.2011.07.015.
28.
Eckstein F, Faber S, Mühlbauer R, Hohe J, Englmeier K-H, Reiser M, et al. Functional adaptation of human joints to mechanical stimuli. Osteoarthritis Cartilage. 2002;10(1):44–50; doi: 10.1053/joca.2001.0480.