ORIGINAL PAPER
The reliability of measures provided by the Unstable Platform for Balance Analysis in young adults with and without visual information
 
More details
Hide details
1
Motor Neuroscience Laboratory Research Group, State University of Londrina, Londrina, Brazil
 
2
Laboratory of Teaching and Research in Biomechanics, State University of Londrina, Londrina, Brazil
 
3
Tutorial Educational Program of Physical Education, State University of Londrina, Londrina, Brazil
 
 
Submission date: 2020-06-19
 
 
Acceptance date: 2021-02-17
 
 
Publication date: 2021-12-06
 
 
Hum Mov. 2022;23(3):104-112
 
KEYWORDS
TOPICS
ABSTRACT
Purpose:
The Unstable Platform for Balance Analysis (UP-balance) has been used in several studies to evaluate different situations of balance and constraints. However, the reliability of its measurements has not been analysed yet. Therefore, the present study investigated the reliability of the measures provided by UP-balance in young adults in bipedal posturę with and without vision.

Methods:
For such analysis, 30 young adults, male and female (mean age: 22.9 years; SD = 3.8 years), performed 3 attempts of the task which consisted in maintaining balance on an UP-balance on a bipedal base for 20 seconds, with and without visual information, with perturbations in the medial-lateral and anterior-posterior directions.

Results:
The UP-balance variables presented high inter-trial reliability (ICC > 0.76; p < 0.05), except for balance time in the anterior-posterior direction and non-vision condition, which exhibited moderate inter-trial reliability (ICC = 0.73; p < 0.05).

Conclusions:
UP-balance seemed to be a reliable instrument for the analysis of balance in situations of instability on a base support.
REFERENCES (38)
1.
Horak FB, Macpherson JM. Postural orientation and equilibrium. In: Rowell LB, Sheperd JT (eds.), Handbook of physiology. New York: Oxford University Press; 1996; 255–292.
 
2.
Winter DA. Human balance and posture control during standing and walking. Gait Posture. 1995;3(4):193–214; doi: 10.1016/0966-6362(96)82849-9.
 
3.
Chang JO, Levy SS, Seay SW, Goble DJ. An alternative to the balance error scoring system: using a low-cost balance board to improve the validity/reliability of sportsrelated concussion balance testing. Clin J Sport Med. 2014;24(3):256–262; doi: 10.1097/JSM.0000000000000016.
 
4.
Wang S-J, Xu D-Q, Su L-N, Li JX. Effect of long-term exercise training on static postural control in older adults: a cross-sectional study. Res Sports Med. 2020;28(4):553–562; doi: 10.1080/15438627.2020.1795661.
 
5.
Era P, Heikkinen E, Gause-Nilsson I, Schroll M. Postural balance in elderly people: changes over a five-year follow- up and its predictive value for survival. Aging Clin Exp Res. 2002;14(Suppl. 3):37–46.
 
6.
Era P, Avlund K, Jokela J, Gause-Nilsson I, Heikkinen E, Steen B, et al. Postural balance and self-reported functional ability in 75-year-old men and women: a crossnational comparative study. J Am Geriatr Soc. 1997;45(1):21–29; doi: 10.1111/j.1532-5415.1997.tb00973.x.
 
7.
Piirtola M, Era P. Force platform measurements as predictors of falls among older people – a review. Gerontology. 2006;52(1):1–16; doi: 10.1159/000089820.
 
8.
Veiga Bruniera CA, Rodacki ALF. Stabilometric responses of young and elderly to recover balance after an unexpected controlled perturbation [in Portuguese]. Rev Educ Fis. 2014;25(3):345–351; doi: 10.4025/reveducfis.v25i3.21495.
 
9.
Teixeira CS, Paludette Dorneles P, Cuozzo Lemos LF, Pranke GI, Garcia Rossi A, Mota CB. Evaluation the influence sensory stimuli that keep body balance in elderly women [in Portuguese]. Rev Bras Geriatr Gerontol. 2011;14(3):453–460; doi: 10.1590/S1809-98232011000300006.
 
10.
Corrêa Soares J, Weber P, Trevisan ME, Trevisan CM, Mota CB, Garcia Rossi A. Influence of pain on postural control in women with neck pain [in Portuguese]. Rev Bras Cineantropom Desempenho Hum. 2013;15(3):371–381; doi: 10.5007/1980-0037.2013v15n3p371.
 
11.
Ko J-H, Newell KM. Aging and the complexity of center of pressure in static and dynamic postural tasks. Neurosci Lett. 2016;610:104–109; doi: 10.1016/j.neulet.2015.10.069.
 
12.
Dos Santos Lima E, de Lima AC, Okazaki VHA, Teixeira LA. Effect of load predictability of manual actions on postural control [in Portuguese]. Rev Bras Cienc Esporte. 2008;29(2):45–56.
 
13.
Mann L, Kleinpaul JF, Teixeira CS, Mota CB. Sensorial systems influence on the maintenance of the balance in pregnant [in Portuguese]. Fisioter Mov. 2011;24(2):315–325; doi: 10.1590/S0103-51502011000200013.
 
14.
Petró B, Papachatzopoulou A, Kiss RM. Devices and tasks involved in the objective assessment of standing dynamic balancing – a systematic literature review. PLoS One. 2017;12(9):e0185188; doi: 10.1371/journal.pone.0185188.
 
15.
Ringhof S, Stein T. Biomechanical assessment of dynamic balance: specificity of different balance tests. Hum Mov Sci. 2018;58:140–147; doi: 10.1016/j.humov.2018.02.004.
 
16.
Gribble PA, Hertel J, Plisky P. Using the Star Excursion Balance Test to assess dynamic postural-control deficits and outcomes in lower extremity injury: a literature and systematic review. J Athl Train. 2012;47(3):339–357; doi: 10.4085/1062-6050-47.3.08.
 
17.
Plisky PJ, Gorman PP, Butler RJ, Kiesel KB, Underwood FB, Elkins B. The reliability of an instrumented device for measuring components of the Star Excursion Balance Test. North Am J Sports Phys Ther. 2009;4(2):92–99.
 
18.
Shaffer SW, Teyhen DS, Lorenson CL, Warren RL, Koreerat CM, Straseske CA, et al. Y-balance test : a reliability study involving multiple raters. Mil Med. 2013;178(11):1264–1270; doi: 10.7205/MILMED-D-13-00222.
 
19.
Fusco A, Giancotti GF, Fuchs PX, Wagner H, da Silva RA, Cortis C. Y balance test: are we doing it right? J Sci Med. Sport. 2020;23(2):194–199; doi: 10.1016/j.jsams.2019.09.016.
 
20.
Yaggie JA, Campbell BM. Effects of balance training on selected skills. J Strength Cond Res. 2006;20(2):422–428; doi: 10.1519/R-17294.1.
 
21.
Verhagen E, van der Beek A, Twisk J, Bouter L, Bahr R, van Mechelen W. The effect of a proprioceptive balance board training program for the prevention of ankle sprains: a prospective controlled trial. Am J Sports Med. 2004;32(6):1385–1393; doi: 10.1177/0363546503262177.
 
22.
Fusco A, Giancotti GF, Fuchs PX, Wagner H, Varalda C, Capranica L, et al. Dynamic balance evaluation: reliability and validity of a computerized wobble board. J Strength Cond Res. 2020;34(6):1709–1715; doi: 10.1519/JSC.0000000000002518.
 
23.
Šarabon N, Mlaker B, Markovic G. A novel tool for the assessment of dynamic balance in healthy individuals. Gait Posture. 2010;31(2):261–264; doi: 10.1016/j.gaitpost.2009.11.001.
 
24.
Lininger MR, Leahy TE, Haug EC, Bowman TG. Testretest reliability of the Limits of Stability test performer by young adults using NeuroCom® VSR Sport. Int J Sports Phys Ther. 2018;13(5):800–807; doi: 10.26603/ijspt20180800.
 
25.
Naylor ME, Romani WA. Test-retest reliability of three dynamic tests obtained from active females using the NeuroCom Balance Master. J Sport Rehabil. 2006;15(4):326–337; doi: 10.1123/jsr.15.4.326.
 
26.
Okazaki VHA. Dynamic Balance Task – unstable platform hardware (customized device for the analysis of the dynamic balance in unstable conditions) [in Portuguese]. Available from: https://okazaki.webs.com/produ....
 
27.
Leme JC, Coelho Candido CR, Okazaki VHA. Effect of visual occlusion and light touch on dynamic postural balance on an unstable platform in elderly and young adult women [in Portuguese]. J Phys Educ. 2018;29(1):e2918; doi: 10.4025/jphyseduc.v29i1.2918.
 
28.
De Oliveira TF, Lopes Vieira JL, Grimble Gonçalves dos Santos AI, Okazaki VHA. Dynamic balance in teenagers with Down syndrome and teenagers with typical development [in Portuguese]. Motriz. 2013;19(2):378–390; doi: 10.1590/S1980-65742013000200015.
 
29.
Coelho Candido CR, Secco Faquin B, Okazaki VHA. Analysis of the constrained action hypothesis and the effect of the focus of attention in balance on unstable platform [in Portuguese]. Rev Educ Fis. 2012;23(4):655–662; doi: 10.4025/reveducfis.v23.4.17036.
 
30.
Castelani RA, de Oliveira TF, Secco Faquin B, Bayeux Dascal J, Marques I, Okazaki VHA. Analysis of dynamic balance in practitioners of classical ballet, of ballroom and non-practitioners of dance [in Portuguese]. Rev Educ Fis. 2014;25(4):597–607; doi: 10.4025/reveducfis.v25i4.22951.
 
31.
Matsudo S, Araújo T, Matsudo V, Andrade D, Andrade E, Oliveira LC, et al. International Physical Activity Questionnaire (IPAQ): study of validity and reliability in Brazil [in Portuguese]. Rev Bras Ativ Fis Saúde. 2001;6(2):5–18; doi: 10.12820/rbafs.v.6n2p5-18.
 
32.
Fleiss JL. Reliability of measurement. In: Fleiss JL, The design and analysis of clinical experiments. New York: John Wiley & Sons, Inc.; 1986; 1–32.
 
33.
Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med. 2016;15(2):155–163; doi: 10.1016/j.jcm.2016.02.012.
 
34.
Qiu H, Xiong S. Center-of-pressure based postural sway measures: reliability and ability to distinguish between age, fear of falling and fall history. Int J Ind Ergon. 2015;47:37–44; doi: 10.1016/j.ergon.2015.02.004.
 
35.
Bauer C, Gröger I, Rupprecht R, Gaßmann KG. Intrasession reliability of force platform parameters in community-dwelling older adults. Arch Phys Med Rehabil. 2008;89(10):1977–1982; doi: 10.1016/j.apmr.2008.02.033.
 
36.
Lee DN, Lishman JR. Vision – the most efficient source of proprioceptive, information for balance control. Agressologie. 1977;18(A):83–93.
 
37.
Chen C-L, Lee J-Y, Horng R-F, Lou S-Z, Su F-C. Development of a three-degrees-of-freedom moveable platform for providing postural perturbations. Proc Inst Mech Eng H. 2009;223(1):87–97; doi: 10.1243/09544119JEIM482.
 
38.
Chen C-L, Lou S-Z, Wu H-W, Wu S-K, Yeung K-T, Su F-C. Effects of the type and direction of support surface perturbation on postural responses. J Neuroeng Rehabil. 2014;11(1):50; doi: 10.1186/1743-0003-11-50.
 
eISSN:1899-1955
Journals System - logo
Scroll to top