ORIGINAL PAPER
Motor control and working memory in adults with neurological injuries: search neuropsychological and electrophysiological evidence of cognitive-motor interaction
 
More details
Hide details
1
Doctoral Program in Cognitive Sciences, Universidad Autónoma de Manizales, Colombia
 
2
Department of Human Movement, Universidad Autónoma de Manizales, Colombia
 
3
Department of Basic Biological Sciences, Universidad Autónoma de Manizales, Colombia
 
 
Submission date: 2023-02-21
 
 
Acceptance date: 2024-04-27
 
 
Publication date: 2024-06-28
 
 
Corresponding author
Julio Ernesto Pérez-Parra   

Autonomous University of Manizales (UAM®)
 
 
Hum Mov. 2024;25(2):114-127
 
KEYWORDS
TOPICS
ABSTRACT
Purpose:
The shared resource theory between motor and cognitive control maintains that the central nervous system shares the same resources to respond to cognitive and motor demands; that is, there are competing demands in cognitive-motor interaction.

Methods:
Through correlations between motor control and working memory in individuals with neurological injuries, this study aims to provide empirical evidence to support the above theory. Motor control was assessed in postural control and Dominant Upper Extremity (DUE) function and activity. Working memory (WM) was assessed via neuropsychological tests and Cognitive Event-related Potentials (ERPs). Fifty-six individuals with neurological injuries between the ages of 19 and 55 years participated.

Results:
The neuropsychological working memory tests applied (Working Memory Index of the Wechsler Adult Intelligence Scale IV, Trail Making Test – part B, and Corsi Block-Tapping Test – backward span sequence) showed significant correlations between DUE functions and activities (ability to grasp, transport and release, and daily life tasks) (rho = [0.27]–[0.47]). Global postural control and WM did not show significant correlations, and nor did dominant upper extremity motor control with P300 wave latency and N200-P300 amplitudes of ERPs, except for grip strength.

Conclusions:
The present results do not provide conclusive empirical evidence of the cognitive-motor interaction, based on the study of relationships between WM and motor control of DUE. However, there are striking correlations between WM and DUE function and activity, especially referring to instrumental activities of daily living. This finding could apply to the rehabilitation of people with neurological injuries and cognitive impairments.

 
REFERENCES (51)
1.
Tseng BY, Cullum CM, Zhang R. Older adults with amnestic mild cognitive impairment exhibit exacerbated gait slowing under dual-task challenges. Curr Alzheimer Res. 2014;11(5):494–500; doi: 10.2174/1567205011666140505110828.
 
2.
Ward N, Menta A, Ulichney V, Raileanu C, Wooten T, Hussey EK, Marfeo E. The specificity of cognitive- motor dual-task interference on balance in young and older adults. Front Aging Neurosci. 2022;13:804936; doi: 10.3389/fnagi.2021.804936.
 
3.
Horak FB. Clinical measurement of postural control in adults. Phys Ther. 1987;67(12):1881–5; doi: 10.1093/ptj/67.12.1881.
 
4.
Horak FB. Postural orientation and equilibrium: what do we need to know about neural control of balance to prevent falls?. Age and Ageing. 2006; 35(S2):ii7–11; doi: 10.1093/ageing/afl077.
 
5.
Oyama Y, Murayama T. Reliability and validity of a new measure of agility and equilibrium: the reaction balance test. Hum Mov. 2023;24(1):140–8; doi: 10.5114/hm.2023.120636.
 
6.
Yin L, Qin J, Chen Y, Xie J, Hong C, Huang J, Xu Y, Liu Z, Tao J. Impact of body mass index on static postural control in adults with and without diabetes: a cross-sectional study. Front Endocrinol. 2021;12:768185; doi: 10.3389/fendo.2021.768185.
 
7.
Lang CE, Bland MD, Bailey RR , Schaefer SY, Birkenmeier RL. Assessment of upper extremity impairment, function, and activity after stroke: foundations for clinical decision making. J Hand Ther. 2013;26(2):104–15; doi: 10.1016/j.jht.2012.06.005.
 
8.
Pérez-Parra JE, Restrepo de Mejía F. The Human movement from the semiotics and the synechism of Charles S. Peirce [in Spanish]. Ánfora. 2022; 29(52):266–92; doi: 10.30854/anf.v29.n52.2022.797.
 
9.
Pérez-Parra JE, Suaza-Restrepo A, Restrepo-de- Mejía F. Analysis of verbal language from the theory of human movement as a complex system. Int J Hum Mov Sports Sci. 2022;10(3):384–95; doi: 10.13189/saj.2022.100304.
 
10.
Seidler RH, Bo J, Anguera JA. Neurocognitive contributions to motor skill learning: the role of working memory. J Mot Behav. 2012;44(6):445–53; doi: 10.1080/00222895.2012.672348.
 
11.
Liang X, Li R, Wong SHS, Sum RKW, Wang P, Yang B, Sit CHP. Physical activity and executive function in children with ADHD: the mediating role of sleep. Front Pediatr. 2022;9:775589; doi: 10.3389/fped.2021.775589.
 
12.
Stöckel T, Hughes CML. The relation between measures of cognitive and motor functioning in 5- to 6-year-old children. Psychol Res. 2016;80(4):543–54; doi: 10.1007/s00426-015-0662-0.
 
13.
Nadkarni NK, Zabjek K, Lee B, McIlroy WE, Black SE. Effect of working memory and spatial attention tasks on gait in healthy young and older adults. Motor Control. 2010;14(2):195–210; doi: 10.1123/mcj.14.2.195.
 
14.
Estevan I, Gandia S, Villarrasa-Sapiña I, Bermejo JL, García-Massó X. Working memory task influence in postural stability and cognitive function in adolescents. Motor Control. 2018;22(4): 425–35; doi: 10.1123mc.2017-0063.
 
15.
Rodrigues ACMA, Tinini RCDR, Gatica-Rojas V, Deslandes AC, Pereira EL, de Rezende LF, Maillot P, Cassilhas RC, Monteiro-Junior RS. Motorcognitive dual-task performance of older women evaluated using Wii Balance Board. Aging Clin Exp Res. 2020;32:907–12; doi: 10.1007/s40520-019-01270-y.
 
16.
Baione V, Ferrazzano G, Celletti C, De Rosa M, Belvisi D, Fabbrini G, Galli M, Camerota F, Conte A. Attention-demanding cognitive tasks worsen postural control in patients with cervical dystonia: acase-controlstudy. FrontNeurol. 2021;12:666438; doi: 10.3389/fneur.2021.666438.
 
17.
Richardson DP, Foxe JJ, Mazurek KA, Abraham N, Freedman EG. Neural markers of proactive and reactive cognitive control are altered during walking: a Mobile Brain-Body Imaging (MoBI) study. Neuro- Image. 2022;247:118853; doi: 10.1016/j.neuroimage.2021.118853.
 
18.
Mukaka MM. Statistics corner: a guide to appropriate use of correlation coefficient in medical research. Malawi Med J. 2012;24(3):69–71.
 
19.
Atanasova B, Graux J, El Hage W, Hommet C, Camus V, Belzung C. Olfaction: a potential cognitive marker of psychiatric disorders. Neurosci Biobehav Rev. 2008:32(7):1315–25; doi: 10.1016/j.neubiorev. 2008.05.003.
 
20.
Hansenne M. Event-related brain potentials in psychopathology: clinical and cognitive perspectives. Psychol Belg. 2006;46(1–2):5–36; doi: 10.53 34/pb-46-1-2-5.
 
21.
Campanella S, Pogarell O, Boutros N. Event-Related Potentials in substance use disorders: a narrative review based on articles from 1984 to 2012. Clin EEG Neurosci. 2014;45(2):67–76; doi: 10.1177/1550059413495533.
 
22.
Raghavan P. Upper limb motor impairment after stroke. Phys Med Rehabil Clin N Am. 2015;26(4): 599–610; doi: 10.1016/j.pmr.2015.06.008.
 
23.
Sawacha Z, Carraro E, Contessa P, Guiotto A, Masiero S, Cobelli C. Relationship between clinical and instrumental balance assessments in chronic post-stroke hemiparesis subjects. J Neuroeng Rehabil. 2013;10:95; doi: 10.1186/1743-0003-10-95.
 
24.
Pinzón Bernal MY, Henao Lema CP, Pérez-Parra JE. Effect of an intervention program based on motor relearning on postural control in adults with hemiparesis [in Spanish]. Fisioterapia. 2020;42(1):5–16; doi: 10.1016/j.ft.2019.09.001.
 
25.
Carvalho-Pinto BPB, Faria CDCM. Health, function and disability in stroke patients in the community. Braz J Phys Ther. 2016;20(4):355–66; doi: 10.1590/bjpt-rbf.2014.0171.
 
26.
Sharma VK, Subramanian SK, Rajendran R. Comparison of cognitive auditory event related potentials and executive functions in adolescent athletes and non-athletes – a cross sectional study. Int J Physiol Pathophysiol Pharmacol. 2019;11(6):274–82.
 
27.
Giaquinto S. Evoked potentials in rehabilitation. A review. Funct Neurol. 2004;19(4):219–25.
 
28.
Arango-Lasprilla JC, Rivera D. (eds.). Neuropsychology in Colombia: regulatory data, current state and future challenges [in Spanish]. Manizales: Editorial Universidad Autónoma de Manizales; 2015, p. 152.
 
29.
Pérez-Parra JE, Restrepo-de-Mejía F. The Trail Making Test (part B) is associated with working memory: a concurrent validity study. Appl Neuropsychol Adult. 2023;1–9; doi: 10.1080/23279095.2023.2171793.
 
30.
Blackwood J, Amini R, Conti G, Hanses Q, Taylor R, Fayyad D. Longitudinal association of executive function and balance in community-dwelling older adults. Innov Aging. 2021;5(Suppl 1):700; doi: 10.1093/geroni/igab046.2603.
 
31.
Nieto-Guisado A, Solana-Tramunt M, Marco- Ahulló A, Sevilla-Sánchez M, Cabrejas C, Campos- Rius J, Morales J. The mediating role of vision in the relationship between proprioception and postural control in older adults, as compared to teenagers and younger and middle-aged adults. Healthcare. 2002;10(1):103; doi: 10.3390/healthcare10010103.
 
32.
Takahashi M, Nakajima T, Takakusaki K. Preceding postural control in forelimb reaching movements in cats. Front Syst Neurosci. 2022;15:792665; doi: 10.3389/fnsys.2021.792665.
 
33.
Mühlbeier A, Puta C, Boström KJ, Wagner H. Monosynaptic stretch reflex fails to explain the initial postural response to sudden lateral perturbations. Front Hum Neurosci. 2017;11:296; doi: 10.3389/fnhum.2017.00296.
 
34.
Roma E, Gobbo S, Bullo V, Spolaor F, Sawacha Z, Duregon F, Bianchini G, Doria E, Alberton CL, Bocalini DS, Cugusi L, Di Blasio A, Ermolao A, Bergamin M. Influence of age on postural control during dual task: a centre of pressure motion and electromyographic analysis. Aging Clin Exp Res. 2022;34(1):137–49; doi: 10.1007/s40520-021-01888-x.
 
35.
Zhou Q, Yang H, Zhou Q, Pan H. Effects of cognitive motor dual-task training on stroke patients: a RCT-based meta-analysis. J Clin Neurosci. 2021;92:175–82; doi: 10.1016/j.jocn.2021.08.009.
 
36.
Albuquerque MR, Rennó GVC, Bruzi AT, Fortes LDS, Malloy-Diniz LF. Association between motor competence and executive functions in children. Appl Neuropsychol Child. 2021;11(3):495–503; doi: 10.1080/21622965.2021.1897814.
 
37.
Abgottspon S, Steiner L, Slavova N, Steinlin M, Grunt S, Everts R. Relationship between motor abilities and executive functions in patients after pediatric stroke. Applied Neuropsychol Child. 2022;11(4):618–28; doi: 10.1080/21622965.2021.1919111.
 
38.
Martinie O, Mercier C, Gordon AM, Robert MT. Upper limb motor planning in individuals with cerebral palsy aged between 3 and 21 years old: a systematic review. Brain Sci. 2021;11(7):920; doi: 10.3390/brainsci11070920.
 
39.
Lee LP, Har AWY, Ngai CH, Lai DWL, Lam BYH, Chan CCH. Audiovisual integrative training for augmenting cognitive- motor functions in older adults with mild cognitive impairment. BMC Geriatr. 2020;20(1):64; doi: 10.1186/s12877-020-1465-8.
 
40.
An HS, Kim DJ. Effects of activities of daily living- based dual-task training on upper extremity function, cognitive function, and quality of life in stroke patients. Osong Public Health Res Perspect. 2021;12(5):304–13; doi: 10.24171/j.phrp.2021.0177.
 
41.
Lee S, Bae S, Jeon D, Kim KY. The effects of cognitive exercise therapy on chronic stroke patients’ upper limb functions, activities of daily living and quality of life. J Phys Ther Sci. 2015;27(9):2787–91; doi: 10.1589/jpts.27.2787.
 
42.
Romero-Ayuso D, Castillero-Perea Á, González P, Navarro E, Molina-Massó JP, Funes MJ et al. Assessment of cognitive instrumental activities of daily living: a systematic review. Disabil Rehabil. 2021;43(10):1342–58; doi: 10.1080/09638288.2019.1665720.
 
43.
Rossi A, Grasso-Cladera A, Luarte N, Riillo A, Parada FJ. The brain/body-in-the-world system is cognitive science’s study object for the twenty-first century. Estud Psicol. 2019;40(2):363–95; doi: 10.1080/02109395.2019.1596704.
 
44.
Orchard S, Ryan J, Woods R, Polekhina G, Storey E, Shah R, Chong T, Murray A, Woods R. Gait speed and grip strength are predictors of cognitive decline and dementia in older individuals. Innov Aging. 2021;5(Suppl 1):652–3; doi: 10.1093/geroni/igab046.2460.
 
45.
Watermeyer T, Massa F, Goerdten J, Stirland L, Johansson B, Muniz-Terrera G. Cognitive dispersion predicts grip strength trajectories in men but not women in a sample of the oldest old without dementia. Innov Aging. 2021;5(3):igab025; doi: 10.1093/geroni/igab025.
 
46.
Nakamura K, Kawasaki A, Suzuki N, Hosoi S, Fujita T, Hachisu S, Nakano H, Naraba H, Mochizuki M, Takahashi Y. Grip strength correlates with mental health and quality of life after critical care: a retrospective study in a post-intensive care syndrome clinic. J Clin Med. 2021;10(14):3044; doi: 10.3390/jcm10143044.
 
47.
Tanaka H, Arai M, Harada M, Hozumi A, Hirata K. Cognition and event-related potentials in adult-onset non-demented myotonic dystrophy type 1. Clin Neurophysiol. 2012;123(2):261–9; doi: 10.1016/j.clinph.2011.06.012.
 
48.
Ludyga S, Pühse U, Gerber M, Mücke M. Muscle strength and executive function in children and adolescents with autism spectrum disorder. Autism Res. 2021;14(12): 2555–63; doi: 10.1002/aur.2587.
 
49.
Katuri RB, Gaur GS, Sahoo JP, Bobby Z, Shanmugavel K. Association of circulating brain-derived neurotrophic factor with cognition among adult obese population. J Obes Metab Syndr. 2021; 30(2):163–72; doi: 10.7570/jomes20107.
 
50.
Vitvarová T, Neumann D, Šimáková R, Kremláček J. Neurophysiological evidence for a compensatory activity during a simple oddball task in adolescents with type 1 diabetes mellitus. J Diabetes Res. 2018;2018:8105407; doi: 10.1155/2018/8105407.
 
51.
Shang X, Meng X, Xiao X, Xie Z, Yuan X. Grip training improves handgrip strength, cognition, and brain white matter in minor acute ischemic stroke patients. Clin Neurol Neurosurg. 2021;209:106886; doi: 10.1016/j.clineuro.2021.106886.
 
eISSN:1899-1955
Journals System - logo
Scroll to top