ORIGINAL PAPER
The relationship between static and dynamic balance in active young adults
More details
Hide details
1
Faculty of Educational Sciences and Sports Sciences, University of Vigo, Vigo, Spain
2
Escola Superior de Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Melgaço, Portugal
3
Research Centre in Sports Sciences, Health Sciences and Human Development, Vila Real, Portugal
4
Instituto de Telecomunicações, Delegação da Covilhã, Covilhã, Portugal
5
Instituto Politécnico da Guarda, Guarda, Portugal
Submission date: 2020-09-10
Acceptance date: 2020-12-07
Publication date: 2021-10-26
Hum Mov. 2022;23(2):65-75
KEYWORDS
TOPICS
ABSTRACT
Purpose:
The objectives were to analyse differences of static and dynamic balance between sexes and test the correlations between static and dynamic balance measures.
Methods:
The study involved 77 physically active adults, university students (age: 19.1 ± 1.1 years; height: 170.2 ± 9.2 cm; body mass: 64.1 ± 10.7 kg). Static balance was assessed with a force platform under Romberg conditions: a foam surface, eyes open (EOFS); eyes closed (ECFS); challenging the visual-vestibular system (CVVS). The Y Balance Test (YBT) evaluated dynamic balance in anterior, posteromedial, and posterolateral directions. One-way ANOVA examined potential differences between sexes, and the Pearson product-moment test verified the correlations between YBT and static balance measures.
Results:
Sex differences were found for all conditions in static balance variables: ellipse area (EA), centre of pressure displacement anteroposterior (DAP) and mediolateral (DML), mean velocity anteroposterior (VAP) and mediolateral (VML), total mean velocity (TV). Females presented a better stability index than males for EOFS (25% DAP, 20% DML, 30% VAP, 21% VML, 19% TV), ECFS (26% DAP, 32% DML, 28% VAP, 32% VML, 32% TV), and CVVS (27% EA, 26% DAP, 19% DML, 17% VAP, 20% VML, 18% TV). Males demonstrated 6% better performance on YBT posterolateral. Correlation tests revealed small to moderate correlations between static and dynamic balance, except for a large positive correlation between YBT anterior and sway area under the CVVS condition [r = 0.54 (0.19; 0.77)] for women.
Conclusions:
The findings indicate a weak relationship between static and dynamic balance in controlling posture.
REFERENCES (46)
1.
Horak FB. Postural orientation and equilibrium: what do we need to know about neural control of balance to prevent falls? Age Ageing. 2006;35(Suppl. 2):ii7–ii11; doi: 10.1093/ageing/afl077.
2.
Winter DA, Patla AE, Frank JS. Assessment of balance control in humans. Med Prog Technol. 1990;16(1–2):31–51.
3.
Clark MA, Lucett SC, Sutton BG. NASM essentials of personal fitness training. Baltimore: Lippincott Williams & Wilkins; 2012.
4.
Duarte M, Freitas SMSF. Revision of posturography based on force plate for balance evaluation [in Portuguese]. Rev Bras Fisioter. 2010;14(3):183–192; doi: 10.1590/S1413-35552010000300003.
5.
Kurz A, Lauber B, Franke S, Leukel C. Balance training reduces postural sway and improves sport-specific performance in visually impaired cross-country skiers. J Strength Cond Res. 2021;35(1):247–252; doi: 10.1519/JSC.0000000000002597.
6.
Sell TC, Tsai Y-S, Smoliga JM, Myers JB, Lephart SM. Strength, f lexibility, and balance characteristics of highly proficient golfers. J Strength Cond Res. 2007; 21(4):1166–1171; doi: 10.1519/R-21826.1.
7.
Artioli DP, Bryk FF, Fukuda T, de Almeida Carvalho NA. Neuromuscular control test in individuals submitted anterior cruciate ligament reconstruction and in advanced physiotherapeutic treatment [in Portuguese]. Rev Bras Clin Med. 2011;9(4):269–273.
8.
Cerrah A, Bayram İ, Yıldızer G, Uğurlu O, Şimşek D, Ertan H. Effects of functional balance training on static and dynamic balance performance of adolescent soccer players. Int J Sports Exerc Train Sci. 2016;2(2):73–81; doi: 10.18826/ijsets.3889.
9.
Lizardo F, Ronzani G, Sousa L, S O, Santos L, Lopes P, et al. Proprioceptive exercise with BOSU maximizes electromyographic activity of the ankle muscles. Biosci J. 2017;33(3):754–762; doi: 10.14393/BJ-v33n3-32840.
10.
Namin SV, Letafatkar A, Farhan V. Effects of balance training on movement control, balance and performance in females with chronic ankle instability. Hormozgan Med J. 2017;21(3):188–199; doi: 10.29252/hmj.21.3.188.
11.
Anderson K, Behm DG. The impact of instability resistance training on balance and stability. Sports Med. 2005;35(1):43–53; doi: 10.2165/00007256-200535010-00004.
12.
Janura M, Bizovska L, Svoboda Z, Cerny M, Zemkova E. Assessment of postural stability in stable and unstable conditions. Acta Bioeng Biomech. 2017;19(4):89–94; doi: 10.5277/ABB -00832-2017-02.
13.
Cruz A, de Oliveira EM, Lopes Melo SI. Biomechanical analysis of equilibrium in the elderly. Acta Ortop Bras. 2010;18(2):96–99; doi: 10.1590/S1413-78522010000200007.
14.
Opala-Berdzik A, Bacik B, Cieślińska-Świder J, Plewa M, Gajewska M. The influence of pregnancy on the location of the center of gravity in standing position. J Hum Kinet. 2010;26:5–11; doi: 10.2478/v10078-010-0042-1.
15.
Alves Alcantara CP, Manzieri Prado J, Duarte M. Analysis of the balance control in surfers during the erect posturę [in Portuguese]. Rev Bras Med Esporte. 2012;18(5):318–321; doi: 10.1590/S1517-86922012000500007.
16.
Valovich McLeod TC, Armstrong T, Miller M, Sauers JL. Balance improvements in female high school basketball players after a 6-week neuromuscular-training program. J Sport Rehabil. 2009;18(4):465–481; doi: 10.1123/jsr.18.4.465.
17.
Zech A, Klahn P, Hoeft J, zu Eulenburg C, Steib S. Time course and dimensions of postural control changes following neuromuscular training in youth field hockey athletes. Eur J Appl Physiol. 2014;114(2):395–403; doi: 10.1007/s00421-013-2786-5.
18.
Curtolo M, Tucci HT, Souza TP, Gonçalves GA, Lucato AC, Yi LC. Balance and postural control in basketball players. Fisioter Mov. 2017;30(2):319–328; doi: 10.1590/1980-5918.030.002.AO12.
19.
Benis R, Bonato M, La Torre AL. Elite female basketball players’ body-weight neuromuscular training and performance on the Y-Balance Test. J Athl Train. 2016;51(9):688–695; doi: 10.4085/1062-6050-51.12.03.
20.
Coughlan GF, Fullam K, Delahunt E, Gissane C, Caulfield BM. A comparison between performance on selected directions of the Star Excursion Balance Test and the Y Balance Test. J Athl Train. 2012;47(4):366–371; doi: 10.4085/1062-6050-47.4.03.
21.
Cuğ M, Duncan A, Wikstrom E. Comparative effects of different balance-training-progression styles on postural control and ankle force production: a randomized controlled trial. J Athl Train. 2016;51(2):101–110; doi: 10.4085/1062-6050-51.2.08.
22.
Sabau E, Niculescu G, Popescu F, Porfirescu C, Gevat C, Lupu E. Study of dynamic postural control in young adults. Sci Mov Health. 2015;15(2, Suppl.):515–520.
23.
Gribble PA, Hertel J. Considerations for normalizing measures of the Star Excursion Balance Test. Meas Phys Educ Exerc Sci. 2003;7(2):89–100; doi: 10.1207/S15327841MPEE0702_3.
24.
Lions C, Bucci MP, Bonnet C. Postural control can be well maintained by healthy, young adults in difficult visual task, even in sway-referenced dynamic conditions. PLoS One. 2016;11(10):e0164400; doi: 10.1371/journal.pone.0164400.
25.
Oba N, Sasagawa S, Yamamoto A, Nakazawa K. Difference in postural control during quiet standing between young children and adults: assessment with center of mass acceleration. PLoS One. 2015;10(10):e0140235; doi: 10.1371/journal.pone.0140235.
26.
Hrysomallis C, McLaughlin P, Goodman C. Relationship between static and dynamic balance tests among elite Australian footballers. J Sci Med Sport. 2006;9(4):288–291; doi: 10.1016/j.jsams.2006.05.021.
27.
Karimi MT, Solomonidis S. The relationship between parameters of static and dynamic stability tests. J Res Med Sci. 2011;16(4):530–535.
28.
Sell TC. An examination, correlation, and comparison of static and dynamic measures of postural stability in healthy, physically active adults. Phys Ther Sport. 2012;13(2):80–86; doi: 10.1016/j.ptsp.2011.06.006.
29.
Kim J-A, Lim O-B, Yi C-H. Difference in static and dynamic stability between flexible flatfeet and neutral feet. Gait Posture. 2015;41(2):546–550; doi: 10.1016/j.gaitpost.2014.12.012.
30.
Brachman A, Kamieniarz A, Michalska J, Pawłowski M, Słomka KJ, Juras G. Balance training programs in athletes – a systematic review. J Hum Kinet. 2017;58(1):45–64; doi: 10.1515/hukin-2017-0088.
31.
Alves CM, Santana EM, Naves ELM. Influence of visual and proprioceptive systems in the postural balance of young adults. In: Costa-Felix R, Machado J, Alvarenga A (eds.), XXVI Brazilian Congress on Biomedical Engineering. Singapore: Springer; 2019; 277–282.
32.
D’Andréa Greve JM, Cuğ M, Dülgeroğlu D, Brech GC, Castilho Alonso A. Relationship between anthropometric factors, gender, and balance under unstable conditions in young adults. Biomed Res Int. 2013;2013:850424; doi: 10.1155/2013/850424.
33.
Masui T, Hasegawa Y, Matsuyama Y, Sakano S, Kawasaki M, Suzuki S. Gender differences in platform measures of balance in rural community-dwelling elders. Arch Gerontol Geriatr. 2005;41(2):201–209; doi: 10.1016/j.archger.2005.02.003.
34.
Panzer VP, Bandinelli S, Hallett M. Biomechanical assessment of quiet standing and changes associated with aging. Arch Phys Med Rehabil. 1995;76(2):151–157; doi: 10.1016/s0003-9993(95)80024-7.
35.
Yoshida K, Iwakura H, Inoue F. Motion analysis in the movements of standing up from and sitting down on a chair. A comparison of normal and hemiparetic subjects and the differences of sex and age among the normals. Scand J Rehabil Med. 1983;15(3):133–140.
36.
Silva Pirôpo U, dos Santos Rocha JA, da Silva Passos R, Lomanto Couto D, dos Santos AM, Barbosa Argolo AM, et al. Influence of visual information in postural control: impact of the used stabilometric analysis methods. Eur J Hum Mov. 2016;37:21–29.
37.
Munro AG, Herrington LC. Between-session reliability of the Star Excursion Balance Test. Phys Ther Sport. 2010;11(4):128–132; doi: 10.1016/j.ptsp.2010.07.002.
38.
Anthony CC, Brown LE, Coburn JW, Galpin AJ, Tran TT. Stance affects balance in surfers. Int J Sports Sci Coach. 2016;11(3):446–450; doi: 10.1177/1747954116645208.
39.
Plisky PJ, Gorman PP, Butler RJ, Kiesel KB, Underwood FB, Elkins B. The reliability of an instrumented device for measuring components of the Star Excursion Balance Test. N Am J Sports Phys Ther. 2009;4(2):92–99.
40.
Paillard T, Lafont C, Costes-Salon MC, Rivière D, Dupui P. Effects of brisk walking on static and dynamic balance, locomotion, body composition, and aerobic capacity in ageing healthy active men. Int J Sports Med. 2004;25(7):539–546; doi: 10.1055/s-2004-820948.
41.
Gribble PA, Kelly SE, Refshauge KM, Hiller CE. Interrater reliability of the Star Excursion Balance Test. J Athl Train. 2013;48(5):621–626; doi: 10.4085/1062-6050-48.3.03.
42.
Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):3–13; doi: 10.1249/MSS.0b013e31818cb278.
43.
Castilho Alonso A, Luna NMS, Mochizuki L, Barbieri F, Santos S, D’Andréa Greve JM. The influence of anthropometric factors on postural balance: the relationship between body composition and posturographic measurements in young adults. Clinics. 2012;67(12):1433–1441; doi: 10.6061/clinics/2012(12)14.
44.
Ericksen H, Gribble PA. Sex differences, hormone fluctuations, ankle stability, and dynamic postural control. J Athl Train. 2012;47(2):143–148; doi: 10.4085/1062-6050-47.2.143.
45.
Pau M, Arippa F, Leban B, Corona F, Ibba G, Todde F, et al. Relationship between static and dynamic balance abilities in Italian professional and youth league soccer players. Phys Ther Sport. 2015;16(3):236–241; doi: 10.1016/j.ptsp.2014.12.003.
46.
Kinzey SJ, Armstrong CW. The reliability of the starexcursion test in assessing dynamic balance. J Orthop Sports Phys Ther. 1998;27(5):356–360; doi: 10.2519/jospt.1998.27.5.356.