ORIGINAL PAPER
The hierarchical organization of arm stroke in a 400-m freestyle swimming race
 
More details
Hide details
1
School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
 
2
Faculty of Physical Education, Metropolitan University of Santos, Santos, Brazil
 
 
Submission date: 2019-10-18
 
 
Acceptance date: 2020-05-22
 
 
Publication date: 2021-05-24
 
 
Hum Mov. 2021;22(4):1-9
 
KEYWORDS
TOPICS
ABSTRACT
Purpose:
Arm stroke is a key variable of successful performance in front crawl swimming. In the present study, the effects of the arm stroke on the front crawl swimming performance were analysed by considering the complementarity of macroconsistency and micro-variability in the arm stroke as a hierarchically organized adaptive system. In this case, consistency is necessary to achieve outcomes reliably, and variability is fundamental for coping with environmental instability.

Methods:
Displacements of swimmers (n = 31) who competed in the 400-m freestyle race of the Paulista Master Championship were captured in 4 moments (partial races 1–4). From the aerial and aquatic phases of the left and right arm strokes, macrostructure (components’ relative timing) and microstructure (components’ overall time) had their variability rates calculated for all partial races on the basis of the biological coefficients of variation.

Results:
It was revealed that swimmers: (i) increased consistency of macrostructure related to the left arm aerial phase stroke in the final race; (ii) maintained consistency of microstructure across races; and (iii) presented macrostructure with inferior rate of variability to the microstructure in the final race.

Conclusions:
Given these results, coaches should emphasize instruction for swimmers to maintain the temporal relationship among arm stroke components (macrostructure) rather than focus on the components themselves (microstructure).

REFERENCES (37)
1.
Alberty MR, Potdevin FP, Dekerle J, Pelayo PP, Sidney MC. Effect of stroke rate reduction on swimming technique during paced exercise. J Strength Cond Res. 2011;25(2):392–397; doi: 10.1519/JSC.0b013e3181b94a51.
 
2.
Arellano R, Brown P, Cappaert J, Nelson RC. Analysis of 50-, 100-, and 200-m freestyle swimmers at the 1992 Olympic Games. J Appl Biomech. 1994;10(2):189–199; doi: 10.1123/jab.10.2.189.
 
3.
Chollet D, Chalies S, Chatard JC. A new index of coordination for the crawl: description and usefulness. Int J Sports Med. 2000;21(1):54–59; doi: 10.1055/s-2000-8855.
 
4.
Millet GP, Chollet D, Chalies S, Chatard JC. Coordination in front crawl in elite triathletes and elite swimmers. Int J Sports Med. 2002;23(2):99–104; doi: 10.1055/s-2002-20126.
 
5.
Seifert L, Chollet D, Chatard JC. Kinematic changes during a 100-m front crawl: effects of performance level and gender. Med Sci Sports Exerc. 2007;39(10):1784–1793; doi: 10.1249/mss.0b013e3180f62f38.
 
6.
Simbaña-Escobar D, Hellard P, Seifert L. Modelling stroking parameters in competitive sprint swimming: understanding inter- and intra-lap variability to assess pacing management. Hum Mov Sci. 2018;61:219–230; doi: 10.1016/j.humov.2018.08.002.
 
7.
Deschodt VJ, Arsac LM, Rouard AH. Relative contribution of arms and legs in humans to propulsion in 25-m sprint front-crawl swimming. Eur J Appl Physiol Occup Physiol. 1999;80(3):192–199; doi: 10.1007/s004210050581.
 
8.
Gourgoulis V, Boli A, Aggeloussis N, Toubekis A, Antoniou P, Kasimatis P, et al. The effect of leg kick on sprint front crawl swimming. J Sports Sci. 2014;32(3):278–289; doi: 10.1080/02640414.2013.823224.
 
9.
Morouço PG, Marinho DA, Izquierdo M, Neiva H, Marques MC. Relative contribution of arms and legs in 30 s fully tethered front crawl swimming. Biomed Res Int. 2015;2015:563206; doi: 10.1155/2015/563206.
 
10.
Seifert L, Boulesteix L, Carter M, Chollet D. The spatial-temporal and coordinative structures in elite male 100-m front crawl swimmers. Int J Sports Med. 2005;26(4):286–293; doi: 10.1055/s-2004-821010.
 
11.
Seifert L, Chollet D, Bardy BG. Effect of swimming velocity on arm coordination in the front crawl: a dynamic analysis. J Sports Sci. 2004;22(7):651–660; doi: 10.1080/02640410310001655787.
 
12.
Chollet D, Pelayo P, Delaplace C, Tourny C, Sidney M. Stroking characteristic variations in the 100-m freestyle for male swimmers of differing skill. Percept Mot Skills. 1997;85(1):167–177; doi: 10.2466/pms.1997.85.1.167.
 
13.
Hellard P, Dekerle J, Avalos M, Caudal N, Knopp M, Hausswirth C. Kinematic measures and stroke rate variability in elite female 200-m swimmers in the four swimming techniques: Athens 2004 Olympic semifinalists and French National 2004 Championship semi-finalists. J Sports Sci. 2008;26(1):35–46; doi: 10.1080/02640410701332515.
 
14.
Kjendlie P-L, Haljand R, Fjørtoft O, Stallman RK. Stroke frequency strategies of international and national swimmers in 100m races. Rev Port Cien Desp. 2006;6(Suppl. 2):52–54.
 
15.
Corrêa UC, Benda RN, de Oliveira DL, Ugrinowitsch H, Freudenheim AM, Tani G. Different faces of variability in the adaptive process of motor skill learning. Nonlinear Dynamics Psychol Life Sci. 2015;19(4):465–487.
 
16.
Barros JAC, Tani G, Corrêa UC. Effects of practice schedule and task specificity on the adaptive proces of motor learning. Hum Mov Sci. 2017;55:196–210; doi: 10.1016/j.humov.2017.07.011.
 
17.
Corrêa UC, Correia WR, Tani G. Towards the teaching of motor skills as a system of growing complexity. In: Koopmans M, Stamovlasis D (eds.), Complex dynamical systems in education: concepts, methods and applications. Cham: Springer; 2016; 93–103.
 
18.
De Paula Pinheiro J, Marques PG, Tani G, Corrêa UC. Diversification of motor skills rely upon an optimal amount of variability of perceptive and motor task demands. Adapt Behav. 2015;23(2):83–96; doi: 10.1177/1059712315571369.
 
19.
Tani G, Corrêa UC, Basso L, Benda RN, Ugrinowitsch H, Choshi K. An adaptive process model of motor learning: insights for the teaching of motor skills. Nonlinear Dynamics Psychol Life Sci. 2014;18(1):47–65.
 
20.
Barabási A-L. Linked: the new science of networks. Cambridge: Perseus Books Group; 2002.
 
21.
Kelso JAS, Engstrom DA. The complementary nature. Cambridge: MIT Press; 2006.
 
22.
Salthe SN. Hierarchical structures. Axiomathes. 2012;22(3):355–383; doi: 10.1007/s10516-012-9185-0.
 
23.
Weiss PA. The living system: determination stratified. Stud Gen. 1969;22(4):361–400.
 
24.
Weiss PA. The basic concept of hierarchic systems. In: Weiss PA (ed.), Hierarchically organized systems in theory and practice. New York: Hafner; 1971; 1–43.
 
25.
Maglischo EW. Swimming fastest. Champaign: Human Kinetics; 2003.
 
26.
Madureira F, Bastos FH, Corrêa UC, Rogel T, Freudenheim AM. Assessment of beginners’ front-crawl stroke efficiency. Percept Mot Skills. 2012;115(1):300–308; doi: 10.2466/06.05.25.PMS.115.4.300-308.
 
27.
Apolinário MR, Oliveira TAC, Ferreira LF, Basso L, Corrêa UC, Freudenheim AM. Effects of different breathing patterns on the performance and the arm stroke in the front crawl [in Portuguese]. Rev Bras Educ Fis Esporte. 2012;26(1):149–159; doi: 10.1590/S1807-55092012000100014.
 
28.
De Oliveira TAC, Torriani-Pasin C, Silva SL, Denardi RA, Madureira F, Apolinário MR, et al. The spatiotemporal constraint on the swimmer’s decisionmaking of turning. Motricidade. 2014;10(3):90–98; doi: 10.6063/motricidade.10(3).3052.
 
29.
Bradshaw EJ, Maulder PS, Keogh JWL. Biological movement variability during the sprint start: performance enhancement or hindrance? Sports Biomech. 2007;6(3):246–260; doi: 10.1080/14763140701489660.
 
30.
Bland JM, Altman DG. Matching. BMJ. 1994;309(6962):1128; doi: 10.1136/bmj.309.6962.1128.
 
31.
Lampadari V, Thanopoulos V, Dopsaj M, Rozi G. Effects of age and gender in physiological responses, mechanics, and performance of master swimmers. Hum Mov. 2019;20(1):17–23; doi: 10.5114/hm.2019.79393.
 
32.
Gentner DR. Timing of skilled motor performance: tests of the proportional duration model. Psychol Rev. 1987;94(2):255–276; doi: 10.1037/0033-295X.94.2.255.
 
33.
Heuer H. Invariant relative timing in motor-program theory. Adv Psychol. 1991;81:37–68; doi: 10.1016/S0166-4115(08)60759-1.
 
34.
Kelso JAS. Relative timing in brain and behavior: some observations about the generalized motor program and self-organized coordination dynamics. Hum Mov Sci. 1997;16(4):453–460; doi: 10.1016/S0167-9457(96)00044-9.
 
35.
Schmidt RA. The search for invariance in skilled Movement behavior. Res Q Exerc Sport. 1985;56(2):188–200; doi: 10.1080/02701367.1985.10608457.
 
36.
Abbiss CR, Laursen PB. Describing and understanding pacing strategies during athletic competition. Sports Med. 2008;38(3):239–252; doi: 10.2165/00007256-200838030-00004.
 
37.
Freudenheim AM, Basso L, Filho EX, Madureira F, da Silva CGS, Manoel EJ. Temporal organization of stroke in the swimming crawl: beginners “versus” skilled [in Portuguese]. Rev Bras Cienc Mov. 2005;13(2):75–84.
 
eISSN:1899-1955
Journals System - logo
Scroll to top