REVIEW PAPER
Physical activity, nutrition, and bone health
 
More details
Hide details
1
University of Palermo, Palermo, Italy
 
2
University of Cassino and Southern Lazio, Cassino, Italy
 
 
Submission date: 2018-07-14
 
 
Acceptance date: 2018-07-17
 
 
Publication date: 2018-09-24
 
 
Hum Mov. 2018;19(4):1-10
 
KEYWORDS
TOPICS
ABSTRACT
This review aims to describe the roles that physical activity and nutrition have in bone metabolism and to examine their effects on bone in a situation of altered metabolism as a consequence of inadequate nutrition and/or excessive physical activity. Referring to the recent studies and the main guidelines in the literature on athlete nutrition, the paper also focuses on essential nutrients for bone health during performance. Finally, it discusses the negative effect of some nutrients on bone mineral density.
REFERENCES (114)
1.
Frost HM. Dynamics of bone remodeling in bone biodynamics. Boston: Little and Brown; 1964.
 
2.
Kambas A, Leontsini D, Avloniti A, Chatzinikolaou A, Stampoulis T, Makris K, et al. Physical activity may be a potent regulator of bone turnover biomarkers in healthy girls during preadolescence. J Bone Miner Metab. 2017;35(6):598–607; doi: 10.1007/s00774-016-0794-3.
 
3.
Yuan Y, Zhang L, Tong X, Zhang M, Zhao Y, Guo J, et al. Mechanical stress regulates bone metabolism through microRNAs. J Cell Physiol. 2017;232(6):1239–1245; doi: 10.1002/jcp.25688.
 
4.
Fernandes T, Gonçalves L, Brito J. Relationships between bone turnover and energy metabolism. J Diabetes Res. 2017;9021314; doi: 10.1155/2017/9021314.
 
5.
Zoch ML, Clemens TL, Riddle RC. New insights into the biology of osteocalcin. Bone. 2016;82:42–49; doi: 10.1016/j.bone.2015.05.046.
 
6.
Ferron M, Lacombe J. Regulation of energy metabolism by the skeleton: osteocalcin and beyond. Arch Biochem Biophys. 2014;561:137–146; doi: 10.1016/j.abb.2014. 05.022.
 
7.
Karsenty G, Oury F. Biology without walls: the novel endocrinology of bone. Annu Rev Physiol. 2012;74:87–105; doi: 10.1146/annurev-physiol-020911-153233.
 
8.
Otten JJ, Hellwig JP, Meyers LD (eds.). Dietary reference intakes: the essential guide to nutrient requirements. Washington: National Academies Press; 2006. Available from: http://nap.edu/openbook.php?re....
 
9.
Institute of Medicine. Dietary reference intakes for calcium and vitamin D. Washington: Institute of Medicine; 2010. Available from: http://www.nationalacademies.o...% 20Brief.pdf.
 
10.
Hinton PS, Nigh P, Thyfault J. Effectiveness of resistance training or jumping-exercise to increase bone mineral density in men with low bone mass: a 12-month randomized, clinical trial. Bone. 2015;79:203–212; doi: 10.1016/j.bone.2015.06.008.
 
11.
Kemmler W, Bebenek M, von Stengel S, Bauer J. Peakbone-mass development in young adults: effects of study.
 
12.
program related levels of occupational and leisure time physical activity and exercise. Osteoporos Int. 2015; 26(2):653–662; doi: 10.1007/s00198-014-2918-8.
 
13.
Kish K, Mezil Y, Ward WE, Klentrou P, Falk B. Effects of plyometric exercise session on markers of bone turnover.
 
14.
in boys and young men. Eur J Appl Physiol. 2015; 115(10):2115–2124; doi: 10.1007/s00421-015-3191-z.
 
15.
Paoli A, Bianco A. What is fitness training? Definitions and implications: a systematic review article. Iran J Public Health. 2015;44(5):602–614.
 
16.
Wang QS, Zhang XC, Li RX, Sun JG, Su WH, Guo Y, et al. A comparative study of mechanical strain, icariin and combination stimulations on improving osteoinductive potential via NF-kappaB activation in osteoblast-like cells. Biomed Eng Online. 2015;14:46; doi: 10.1186 /s12938-015-0039-z.
 
17.
Omi N. Influence of exercise and sports on bone. J Phys Fitness Sports Med. 2014;3(2):241–248; doi: 10.7600/ jpfsm.3.241.
 
18.
Ooi FK, Sahrir NA. Physical activity, bone remodelling and bone metabolism markers. J Exerc Sports Orthop. 2018;5(2):1–4; doi: 10.15226/2374-6904/5/2/00171.
 
19.
Ohshima H, Matsumoto T. Space flight/bedrest immobilization and bone. Bone metabolism in space flight and long-duration bed rest [in Japanese]. Clin Calcium. 2012;22(12):1803–1812; doi: CliCa121218031812.
 
20.
Rahim M, Ooi FK, Hamid WZWA. Changes of bone metabolism markers and muscular performance with.
 
21.
combined aerobic dance exercise and honey supplementation in adult women. Sports Exerc Med Open J. 2016;1(6):186–197; doi: 10.17140/ SEMOJ-1-129.
 
22.
Ooi FK, Aziz A. Bone metabolism markers in response to circuit training and honey supplementation in young.
 
23.
males. Malays J Med Res. 2017;1(4):28–34.
 
24.
Thompson WR, Rubin CT, Rubin J. Mechanical regulation of signaling pathways in bone. Gene. 2012;503(2): 179–193; doi: 10.1016/j.gene.2012.04.076.
 
25.
Rochefort GY, Benhamou CL. Osteocytes are not only mechanoreceptive cells. Int J Numer Method Biomed Eng. 2013;29(10):1082–1088; doi: 10.1002/cnm.2561.
 
26.
Zhao L, Shim JW, Dodge TR , Robling AG, Yokota H. Inactivation of Lrp5 in osteocytes reduces young’s modulus.
 
27.
and responsiveness to the mechanical loading. Bone. 2013;54(1):35–43; doi: 10.1016/j.bone.2013.01.033.
 
28.
Luna C, Li G, Qiu J, Epstein DL, Gonzalez P. Micro-RNA-24 regulates the processing of latent TGF 1 during.
 
29.
cyclic mechanical stress in human trabecular meshwork cells through direct targeting of FURIN. J Cell Physiol. 2011;226(5):1407–1414; doi: 10.1002/jcp.22476.
 
30.
Schiera G, Contrò V, Sacco A, Macchiarella A, Cieszczyk P, Proia P. From epigenetics to anti-doping application: a new tool of detection. Hum Mov. 2017;18(1):3–10; doi: 10.1515/humo-2017-0005.
 
31.
Goff LA, Boucher S, Ricupero CL, Fenstermacher S, Swerdel M, Chase LG, et al. Differentiating human multipotent mesenchymal stromal cells regulate microRNAs: prediction of microRNA regulation by PDGF during osteogenesis. Exp Hematol. 2008;36(10):1354–1369; doi: 10.1016/j.exphem.2008.05.004.
 
32.
Inose H, Ochi H, Kimura A, Fujita K, Xu R, Sato S, et al. A microRNA regulatory mechanism of osteoblast differentiation. Proc Natl Acad Sci USA. 2009;106(49):20794–20799; doi: 10.1073/pnas.0909311106.
 
33.
Kook SH, Son YO, Hwang JM, Kim EM, Lee CB, Jeon YM, et al. Mechanical force inhibits osteoclastogenic potential of human periodontal ligament fibroblasts through OPG production and ERK-mediated signaling. J Cell Biochem. 2009;106(6):1010–1019; doi: 10.1002/jcb.22086.
 
34.
Guo Y, Wang Y, Liu Y, Liu Y, Zeng Q, Zhao Y, et al. MicroRNA-218, microRNA-191*, microRNA-3070a and microRNA-33 are responsive to mechanical strain exerted on osteoblastic cells. Mol Med Rep. 2015;12(2): 3033–3038; doi: 10.3892/mmr.2015.3705.
 
35.
Hassan MQ, Gordon JA, Beloti MM, Croce CM, van Wijnen AJ, Stein JL, et al. A network connecting Runx2, SATB 2, and the miR-23a~27a~24-2 cluster regulates the osteoblast differentiation program. Proc Natl Acad Sci USA. 2010;107(46):19879–19884; doi: 10.1073/pnas.1007698107.
 
36.
Nakasa T, Shibuya H, Nagata Y, Niimoto T, Ochi M. The inhibitory effect of microRNA-146a expression on bone destruction in collagen-induced arthritis. Arthritis Rheum. 2011;63(6):1582–1590; doi: 10.1002/art.30321.
 
37.
Blaber EA, Dvorochkin N, Torres ML, Yousuf R, Burns BP, Globus RK, et al. Mechanical unloading of bone in microgravity reduces mesenchymal and hematopoietic stem cell-mediated tissue regeneration. Stem Cell Res. 2014;13(2):181–201; doi: 10.1016/j.scr.2014.05.005.
 
38.
Sambandam Y, Townsend MT, Pierce JJ, Lipman CM, Haque A, Bateman TA, et al. Microgravity control of autophagy modulates osteoclastogenesis. Bone. 2014; 61:125–131; doi: 10.1016/j.bone.2014.01.004.
 
39.
Stone TM, Wingo JE, Young JC, Navalta JW. An evaluation of select physical activity exercise classes on bone metabolism. Int J Exerc Sci. 2018;11(2):452–461.
 
40.
Pellikaan P, Giarmatzis G, Vander Sloten J, Verschueren S, Jonkers I. Ranking of osteogenic potential of physical exercises in postmenopausal women based on femoral neck strains. PLoS One. 2018;13(4):e0195463; doi: 10.1371/journal.pone.0195463.
 
41.
Paoli A, Moro T, Bianco A. Lift weights to fight overweight. Clin Physiol Funct Imaging. 2015;35(1):1–6; doi: 10.1111/cpf.12136.
 
42.
Kerr D, Ackland T, Maslen B, Morton A, Prince R. Resistance training over 2 years increases bone mass in calcium-replete in postmenopausal women. J Bone Miner Res. 2001;16(1):175–181; doi: 10.1359/jbmr.2001.16.1.175.
 
43.
Nichols DL, Sanborn CF, Essery EV. Bone density and young athletic women. Sports Med. 2007;37(11):1001–1014; doi: 10.2165/00007256-200737110-00006.
 
44.
Tenforde AS, Fredericson M, Sayres LC, Cutti P, Sainani KL. Identifying sex-specific risk factors for low bone mineral density in adolescent runners. Am J Sports Med. 2015;43(6):1494–1504; doi: 10.1177/0363546515572142.
 
45.
De Smet S, Michels N, Polfliet C, Sara D’Haese S, Roggen I, De Henauw S, et al. The influence of dairy consumption and physical activity on ultrasound bone measurements in Flemish children. J Bone Miner Metab. 2015;33(2): 192–200; doi: 10.1007/s00774-014-0577-7.
 
46.
Burrows M, Nevill AM, Bird S, Simpson D. Physiological factors associated with low bone mineral density in female endurance runners. Br J Sports Med. 2003; 37(1):67–71.
 
47.
Duplanty AA, Levitt DE, Hill DW, McFarlin BK, Di-Marco NM, Vingren JL. Resistance training is associated with higher bone mineral density among young adult male distance runners independent of physiological factors. J Strength Cond Res. 2018;32(6):1594–1600; doi: 10.1519/JSC.0000000000002504.
 
48.
Senderovich H, Kosmopoulos A. An insight into the effect of exercises on the prevention of osteoporosis and associated fractures in high-risk individuals. Rambam Maimonides Med J. 2018;9(1):e0005; doi: 10.5041/RMMJ.10325.
 
49.
Aagaard P, Simonsen EB, Andersen JL, Magnusson SP, Halkjaer-Kristensen J, Dyhre-Poulsen P. Neural inhibition during maximal eccentric and concentric quadriceps contraction: effects of resistance training. J Appl Physiol. 2000;89(6):2249–2257; doi: 10.1152/jappl.2000.89.6.2249.
 
50.
Hortobágyi T, Hill JP, Houmard JA, Fraser DD , Lambert NJ, Israel RG. Adaptive responses to muscle lengthening and shortening in humans. J Appl Physiol. 1996; 80(3):765–772; doi: 10.1152/jappl.1996.80.3.765.
 
51.
Hawkins SA, Schroeder ET, Wiswell RA, Jaque SV, Marcell TJ, Costa K. Eccentric muscle action increases sitespecific osteogenic response. Med Sci Sports Exerc. 1999;31(9):1287–1292; doi: 10.1097/00005768-199909000-00009.
 
52.
Zuo B, Zhu J, Li J, Wang C, Zhao X, Cai G, et al. MicroRNA-103a functions as a mechanosensitive micro- RNA to inhibit bone formation through targeting Runx2. J Bone Miner Res. 2015;30(2):330–345; doi: 10.1002/jbmr.2352.
 
53.
National Osteoporosis Foundation. Osteoporosis exercise for strong bones. Available from: https://www.nof. org/patients/fracturesfall-prevention/exercisesafemovement/osteoporosis-exercise-for-strong-bones.
 
54.
National Institute of Arthritis and Musculoskeletal and Skin Diseases. Handout on health: osteoporosis. Available from: https://www.bones.nih.gov/heal....
 
55.
Fuchs RK, Bauer JJ, Snow CM. Jumping improves hip and lumbar spine bone mass in prepubescent children: a randomized controlled trial. J Bone Miner Res. 2001; 16(1):148–156; doi: 10.1359/jbmr.2001.16.1.148.
 
56.
Harding AT, Beck BR . Exercise, osteoporosis, and bone geometry. Sports. 2017;5(2):29; doi: 10.3390/sports5020029.
 
57.
Tan VP, Macdonald HM, Kim S, Nettlefold L, Gabel L, Ashe MC, et al. Influence of physical activity on bone.
 
58.
strength in children and adolescents: a systematic review and narrative synthesis. J Bone Miner Res. 2014; 29(10):2161–2181; doi: 10.1002/jbmr.2254.
 
59.
Gómez-Cabello A, Ara I, González-Agüero A, Casajús JA, Vicente-Rodríguez G. Effects of training on bone mass in older adults: a systematic review. Sports Med. 2012; 42(4):301–325; doi: 10.2165/11597670-000000000-00000.
 
60.
Barron E, Cano Sokoloff N, Maffazioli G, Ackerman KE, Woolley R, Holmes TM, et al. Diets high in fiber and vegetable protein are associated with low lumbar bone mineral density in young athletes with oligoamenorrhea. J Acad Nutr Diet. 2016;116(3):481–489; doi: 10.1016/j.jand.2015.10.022.
 
61.
Cano Sokoloff N, Eguiguren ML, Wargo K, Ackerman KE, Baskaran C, Singhal V, et al. Bone parameters in relation to attitudes and feelings associated with disordered eating in oligo-amenorrheic athletes, eumenorrheic athletes, and nonathletes. Int J Eat Disord. 2015; 48(5):522–526; doi: 10.1002/eat.22405.
 
62.
Ganong WF. Medical Physiology [in Portuguese], 19th ed. São Paulo: McGraw-Hill Companies; 1999.
 
63.
Helge EW, Kanstrup IL. Bone density in female elite gymnasts: impact of muscle strength and sex hormones. Med Sci Sports Exerc. 2002;34(1):174–180; doi: 10.1097/00005768-200201000-00026.
 
64.
Gremion G, Rizzoli R, Slosman D, Theintz G, Bonjour JP. Oligo-amenorrheic long-distance runners may lose more bone in spine than in femur. Med Sci Sports Exerc. 2001;33(1):15–21; doi: 10.1097/00005768-200101000-00004.
 
65.
Bjorntorp P. Importance of fat as a support nutrient for energy: metabolism of athletes. J Sports Sci. 1991;9: 71–76; doi: 10.1080/02640419108729867.
 
66.
Tunstall RJ, Mehan KA, Wadley GD, Collier GR, Bonen A, Hargreaves M, et al. Exercise training increases lipid metabolism gene expression in human skeletal muscle. Am J Physiol Endocrinol Metab. 2002;283(1): E66–E72; doi: 10.1152/ajpendo.00475.2001.
 
67.
Aucouturier J, Baker JS, Duché P. Fat and carbohydrate metabolism during submaximal exercise in children. Sports Med. 2008;38(3):213–238; doi: 10.2165/00007256-200838030-00003.
 
68.
Lichtenstein AH, Kennedy E, Barrier P, Danford D, Ernst ND, Grundy SM, et al. Dietary fat consumption and health. Nutr Rev. 1998;56(5 Pt 2):S3–S28; doi: 10.1111/j.1753-4887.1998.tb01728.x.
 
69.
Smith JW, Jeukendrup A. Performance nutrition for young athletes. In: Bagchi D, Nair S, Sen C (eds.), Nutrition and enhanced sports performance: muscle building, endurance, and strength. London: Elsevier; 2013; 523–529.
 
70.
Bushman BA. Calorie requirements for young competitive female athletes. ACSM Health Fitness J. 2012; 16(5):4–8; doi: 10.1249/FIT.0b013e318264c8b3.
 
71.
Cooper JA, Watras AC, Shriver T, Adams AK, Schoeller DA. Influence of dietary fatty acid composition and exercise on changes in fat oxidation from a high-fat diet. J Appl Physiol. 2010;109(4):1011–1018; doi: 10.1152/japplphysiol.01025.2009.
 
72.
Smith JW, Holmes ME, McAllister MJ. Nutritional considerations for performance in young athletes. J Sports Med. 2015; 2015:734649; doi: 10.1155/2015/734649.
 
73.
Piers LS, Walker KZ, Stoney RM, Soares MJ, O’Dea K. Substitution of saturated with monounsaturated fat in a 4-week diet affects body weight and composition of overweight and obese men. Br J Nutr. 2003;90(3):717–727; doi: 10.1079/BJN2003948.
 
74.
Halton TL, Hu FB. The effects of high protein diets on thermogenesis, satiety and weight loss: a critical review. J Am Coll Nutr. 2004;23(5):373–385; doi: 10.1080/07315724.2004.10719381.
 
75.
Phillips SM, Van Loon LJ. Dietary protein for athletes: from requirements to optimum adaptation. J Sports Sci. 2011;29(Suppl. 1):S29–S38; doi: 10.1080/02640414.2011.619204.
 
76.
Amato A, Sacco A, Macchiarella A, Contrò V, Sabatino E, Galassi C, et al. Influence of nutrition and genetics on performance: a pilot study in a group of gymnasts. Hum Mov. 2017;18(3):12–16; doi: 10.1515/humo-2017-0029.
 
77.
Duellman MC, Lukaszuk JM, Prawitz AD, Brandenburg JP. Protein supplement users among high school athletes have misconceptions about effectiveness. J Strength Cond Res. 2008;22(4):1124–1129; doi: 10.1519/ JSC.0b013e31817394b9.
 
78.
Macnaughton LS, Wardle S, Witard O, McGlory C, Hamilton DL, Jeromson S, et al. The response of muscle protein synthesis following whole-body resistance exercise is greater following 40 g than 20 g of ingested whey protein. Physiol Rep. 2016;4(15):e12893; doi: 10.14814/phy2.12893.
 
79.
Burke LM, Hawley JA, Wong SHS, Jeukendrup AE. Carbohydrates for training and competition. J Sports Sci. 2011;29(Suppl. 1):S17–S27; doi: 10.1080/02640414. 2011.585473.
 
80.
Johnson EJ, Russell RM. Beta-carotene. In: Coates PM, Betz JM, Blackman MR, Cragg GM, Levine M, Moss J, et al. (eds.), Encyclopedia of dietary supplements, 2nd ed. New York, London: Informa Healthcare; 2010; 115–120.
 
81.
Solomons NW. Vitamin A. In: Bowman BA, Russell RM (eds.), Present knowledge in nutrition, 9th ed. Washington, DC: International Life Sciences Institute; 2006; 157–183.
 
82.
Institute of Medicine, Food and Nutrition Board. Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. Washington, DC: National Academies Press; 2001.
 
83.
Ross AC. Vitamin A. In: Coates PM, Betz JM, Blackman MR, Cragg GM, Levine M, Moss J, et al. (eds.), Encyclopedia of dietary supplements, 2nd ed. New York, London: Informa Healthcare; 2010; 778–791.
 
84.
Great Britain Department of Health. Nutrition and bone health with particular reference to calcium and vitamin D. Report of the Subgroup on Bone Health Working Group on the Nutritional Status of the Population of the Committee on Medical Aspects of Food and Nutrition Policy. Report on health and social subjects. London: The Stationery Office; 1998.
 
85.
Szulc P, Arlot M, Chapuy MC, Duboeuf F, Meunier PJ, Delmas PD. Serum undercarboxylated osteocalcin correlates with hip bone mineral density in elderly women. J Bone Miner Res. 1994;9(10):1591–1595; doi: 10.1002/jbmr.5650091012.
 
86.
Shearer MJ. Role of vitamin K and Gla proteins in the pathophysiology of osteoporosis and vascular calcification. Curr Opin Clin Nutr Metab Care. 2000;3(6):433–438; doi: 10.1097/00075197-200011000-00004.
 
87.
New SA, Robins SP, Campbell MK, Martin JC, Garton MJ, Bolton-Smith C, et al. Dietary influences on bone mass and bone metabolism: further evidence of a positive link between fruit and vegetable consumption and bone health? Am J Clin Nutr. 2000;71(1):142–151; doi: 10.1093/ajcn/71.1.142.
 
88.
Favus MJ, American Society for Bone and Mineral Research. Primer of the metabolic bone diseases and disorders of mineral metabolism, 4th ed. Philadelphia: Lippincott Williams & Wilkins; 1999.
 
89.
Strause L, Saltman P, Smith KT, Bracker M, Andon MB. Spinal bone loss in postmenopausal women supplemented with calcium and trace minerals. J Nutr. 1994; 124(7):1060–1064; doi: 10.1093/jn/124.7.1060.
 
90.
Meacham SL, Taper LJ, Volpe SL. Effects of boron supplementation on bone mineral density and dietary, blood and urinary calcium, phosphorus, magnesium and boron in female athletes. Environ Health Perspect. 1994;102 (Suppl. 7):79–82; doi: 10.1289/ehp.94102s779.
 
91.
Murray-Kolb LE, Beard J. Iron. In: Coates PM, Betz JM, Blackman MR, Cragg GM, Levine M, Moss J, et al. (eds.), Encyclopedia of dietary supplements, 2nd ed. New York, London: Informa Healthcare; 2010; 432–438.
 
92.
Cook JD, Reddy MB. Effect of ascorbic acid intake on nonheme-iron absorption from a complete diet. Am J Clin Nutr. 2001;73(1):93–98; doi: 10.1093/ajcn/73.1.93.
 
93.
Loucks AB, Kiens B, Wright HH. Energy availability in athletes. J Sports Sci. 2011;29(Suppl. 1):S7–S15; doi: 10.1080/02640414.2011.588958.
 
94.
Melin A, Tornberg AB, Skouby S, Faber J, Ritz C, Sjödin A, et al. The LEAF questionnaire: a screening tool for the identification of female athletes at risk for the female athlete triad. Br J Sports Med. 2014;48(7):540–545; doi: 10.1136/bjsports-2013-093240.
 
95.
Fudge BW, Westerterp KR, Kiplamai FK, Onywera VO, Boit MK, Kayser B, et al. Evidence of negative energy balance using doubly labelled water in elite Kenyan endurance runners prior to competition. Br J Nutr. 2006;95(1):59–66; doi: 10.1079/BJN20051608.
 
96.
Drenowatz C, Eisenmann JC, Carlson JJ, Pfeiffer KA, Pivarnik JM. Energy expenditure and dietary intake during high-volume and low-volume training periods among male endurance athletes. Appl Physiol Nutr Metab. 2012;37(2):199–205; doi: 10.1139/h11-155.
 
97.
Henriksen DB , Alexandersen P, Bjarnason NH, Vilsbøll T, Hartmann B, Henriksen EE, et al. Role of gastrointestinal hormones in postprandial reduction of bone resorption. J Bone Miner Res. 2003;18(12):2180–2189; doi: 10.1359/jbmr.2003.18.12.2180.
 
98.
Henriksen DB , Alexandersen P, Hartmann B, Adrian CL, Byrjalsen I, Bone HG, et al. Four-month treatment with GLP-2 significantly increases hip BMD: a randomized, placebo-controlled, dose-ranging study in postmenopausal women with low BMD. Bone. 2009;45(5):833–842; doi: 10.1016/j.bone.2009.07.008.
 
99.
De Sousa MV, Pereira RM, Fukui R, Caparbo VF, da Silva ME. Carbohydrate beverages attenuate bone resorption markers in elite runners. Metabolism. 2014;63(12): 1536–1541; doi: 10.1016/j.metabol.2014.08.011.
 
100.
Sale C, Varley I, Jones TW, James RM, Tang JC, Fraser WD, et al. Effect of carbohydrate feeding on the bone metabolic response to running. J Appl Physiol. 2015; 119(7):824–830; doi: 10.1152/japplphysiol.00241.2015.
 
101.
Haakonssen EC, Ross ML, Knight EJ, Cato LE, Nana A, Wluka AE, et al. The effects of a calcium-rich pre-exercise meal on biomarkers of calcium homeostasis in competitive female cyclists: a randomised crossover trial. PLoS One. 2014;10(5):e0123302; doi: 10.1371/journal.pone.0123302.
 
102.
Jenkins DJ, Jenkins AL, Wolever TM, Collier GR, Rao AV, Thompson LU. Starchy foods and fiber: reduced rate of digestion and improved carbohydrate metabolism. Scand J Gastroenterol. 1987;22(Suppl. 129): 132–141; doi: 10.3109/00365528709095867.
 
103.
Townsend R, Elliott-Sale K, Currell K, Fraser W, Sale C. Ingestion of carbohydrate and protein immediately after an exhaustive run suppresses bone resorption and increases bone formation in trained male endurance runners. Bone Research Society Annual Meeting, Liverpool 2016.
 
104.
Van Spil WE, Drossaers-Bakker KW, Lafeber FP. Associations of CTX-II with biochemical markers of bone turnover raise questions on its tissue origin: data from CHECK, a cohort study of early osteoarthritis. Ann Rheum Dis. 2013;72(1):29–36; doi: 10.1136/annrheumdis-2011-201177.
 
105.
Ross AC, Manson JE, Abrams SA, Aloia JF, Brannon PM, Clinton SK, et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. J Clin Endocrinol Metab. 2011;96(1):53–58; doi: 10.1210/jc.2010-2704.
 
106.
Khaw KT, Sneyd MJ, Compston J. Bone density, parathyroid hormone and 25-hydroxyvitamin D concentrations in middle aged women. BMJ. 1992;305(6848): 273–277.
 
107.
Ooms ME, Roos JC, Bezemer PD, Van Der Vijgch WJ, Bouter LM, Lips P. Prevention of bone loss by vitamin D supplementation in elderly women: a randomised double-blind trial. J Clin Endocrinol Metab. 1995; 80(4):1052–1058; doi: 10.1210/jcem.80.4.7714065.
 
108.
Dawson-Hughes B, Dallal GE, Krall EA, Sadowski L, Sahyoun N, Tannenbaum S. A controlled trial of the effect of calcium supplementation on bone density in postmenopausal women. N Engl J Med. 1990;323(13): 878–883; doi: 10.1056/NEJM199009273231305.
 
109.
Barry DW, Hansen KC, van Pelt RE, Witten M, Wolfe P, Kohrt WM. Acute calcium ingestion attenuates exercise-induced disruption of calcium homeostasis. Med Sci Sports Exerc. 2011;43(4):617–623; doi: 10.1249/MSS.0b013e3181f79fa8.
 
110.
Baer DJ, Rumpler WV, Miles CW, Fahey GC Jr. Dietary fiber decreases the metabolizable energy content and nutrient digestibility of mixed diets fed to humans. J Nutr. 1997;127(4):579–586; doi: 10.1093/jn/127.4.579.
 
111.
Gaskins AJ, Mumford SL, Zhang C, Wactawski-Wende J, Hovey KM, Whitcomb BW, et al. Effect of daily fiber intake on reproductive function: the Bio-Cycle study. Am J Clin Nutr. 2009;90(4):1061–1069; doi: 10.3945/ajcn.2009.27990.
 
112.
Manolagas SC. From estrogen-centric to aging and oxidative stress: a revised perspective of the pathogenesis of osteoporosis. Endocr Rev. 2010;31(3):266–300; doi: 10.1210/er.2009-0024.
 
113.
Almeida M, Iyer S, Martin-Millan M, Bartell SM, Han L, Ambrogini E, et al. Estrogen receptor- signaling in osteoblast progenitors stimulates cortical bone accrual. J Clin Invest. 2013;123(1):394–404; doi: 10.1172/JCI65910.
 
114.
Domazetovic V, Marcucci G, Iantomasi T, Brandi ML, Vincenzini MT. Oxidative stress in bone remodeling: role of antioxidants. Clin Cases Miner Bone Metab. 2017;14(2):209–216; doi: 10.11138/ccmbm/2017.14.1.209.
 
eISSN:1899-1955
Journals System - logo
Scroll to top