Are vertical jump height and power output correlated to physical performance in different sports? An allometric approach
More details
Hide details
Biomechanics Laboratory, Center of Sports, Federal University of Santa Catarina, Florianópolis, Brazil
Research Group on Technology, Sport and Rehabilitation, Catarinense Federal Institute, Araquari, Brazil
Submission date: 2019-09-17
Acceptance date: 2020-03-02
Publication date: 2020-11-15
Hum Mov. 2021;22(2):60-67
This study aimed to analyse the relationship between vertical jump parameters – jump height (JH), peak power output (PPO), and mean power output (MPO) – and specific physical performance in different sports using the allometric approach. In this sense, it was verified whether scaled power output for body mass might have a stronger correlation with physical performance than raw power output.

The study involved 52 male athletes (21 judokas, 18 futsal players, and 13 sprint runners). They performed the following tests: vertical jumps (countermovement and squat), specific physical tests for judo (Special Judo Fitness Test), repeated sprint ability for futsal players, and sprint running (20 m and 200 m) for runners. A specific allometric exponent for PPO and MPO was established. Pearson’s correlation was used to determine the relationship between physical tests and vertical jump parameters for absolute and allometric scales.

Moderate to very large correlations were found between physical performance and JH (r: 0.47–0.87), PPO (r: 0.47–0.75), and MPO (r: 0.49–0.81). Considering power output scaled for body mass, the correlation between jump parameters and physical performance was greater than absolute values, in which the r values ranged 0.46–0.81 for PPO and 0.52–0.84 for MPO.

JH and power output seem to correlate in a similar magnitude with physical performance tests for most variables and sports analysed. From a practical point of view, coaches and physical trainers are encouraged to use JH to monitor training, considering the cost of equipment and practicality.

Zaggelidis G, Lazaridis SN, Malkogiorgos A, Mavrovouniotis F. Differences in vertical jumping performance between untrained males and advanced Greek judokas. Arch Budo. 2012;8(2):87–90; doi: 10.12659/AOB.882775.
Castagna C, Castellini E. Vertical jump performance in Italian male and female national team soccer players. J Strength Cond Res. 2013;27(4):1156–1161; doi: 10.1519/JSC.0b013e3182610999.
Harrison AJ, Keane SP, Coglan J. Force-velocity relationship and stretch-shortening cycle function in sprint and endurance athletes. J Strength Cond Res. 2004;18(3):473–479; doi: 10.1519/13163.1.
Loturco I, Pereira LA, Cal Abad CC, D’Angelo RA, Fernandes V, Kitamura K, et al. Vertical and horizontal jump tests are strongly associated with competitive performance in 100-m dash events. J Strength Cond Res. 2015;29(7):1966–1971; doi: 10.1519/JSC.0000000000000849.
Twist C, Highton J. Monitoring fatigue and recovery in rugby league players. Int J Sports Physiol Perform. 2013;8(5):467–474; doi: 10.1123/ijspp.8.5.467.
Halson SL. Monitoring training load to understand fatigue in athletes. Sports Med. 2014;44(Suppl. 2):S139–S147; doi: 10.1007/s40279-014-0253-z.
Claudino JG, Cronin J, Mezêncio B, McMaster DT, McGuigan M, Tricoli V, et al. The countermovement jump to monitor neuromuscular status: a meta-analysis. J Sci Med Sport. 2017;20(4):397–402; doi: 10.1016/j.jsams.2016.08.011.
Cronin J, Sleivert G. Challenges in understanding the influence of maximal power training on improving athletic performance. Sports Med. 2005;35(3):213–234; doi: 10.2165/00007256-200535030-00003.
Cormie P, McGuigan MR, Newton RU. Developing maximal neuromuscular power: Part 1 – biological basis of maximal power production. Sports Med. 2011;41(1):17–38; doi: 10.2165/11537690-000000000-00000.
Van Hooren B, Zolotarjova J. The difference between countermovement and squat jump performances: a review of underlying mechanisms with practical applications. J Strength Cond Res. 2017;31(7):2011–2020; doi: 10.1519/JSC.0000000000001913.
Morin J-B, Jiménez-Reyes P, Brughelli M, Samozino P. When jump height is not a good indicator of lower limb maximal power output: theoretical demonstration, experimental.
evidence and practical solutions. Sports Med. 2019;49(7):999–1006; doi: 10.1007/s40279-019-01073-1.
Hayes M, Smith D, Castle PC, Watt PW, Ross EZ, Maxwell NS. Peak power output provides the most reliable measure of performance in prolonged intermittent-sprint cycling. J Sports Sci. 2013;31(5):565–572; doi: 10.1080/02640414.2012.744077.
Markovic G, Jaric S. Is vertical jump height a body size-independent measure of muscle power? J Sports Sci.2007;25(12):1355–1363; doi: 10.1080/02640410601021713.
Knudson DV. Correcting the use of the term “power” in the strength and conditioning literature. J Strength Cond Res. 2009;23(6):1902–1908; doi: 10.1519/JSC.0b013e3181b7f5e5.
Kons RL, da Silva Athayde MS, da Silva Junior JN, da Silva Tavares W, Detanico D. Vertical jump performance in judo and Brazilian jiu-jitsu athletes: an approach with different training levels. Ido Mov Culture J Martial Arts Anthrop. 2017;17(4):25–31; doi: 10.14589/ido.17.4.5.
Linthorne NP. Analysis of standing vertical jumps using a force platform. Am J Phys. 2001;69(11):1198–1204; doi: 10.1119/1.1397460.
Ache-Dias J, Dal Pupo J, Gheller RG, Külkamp W, Moro ARP. Power output prediction from jump height and body mass does not appropriately categorize or rank athletes. J Strength Cond Res. 2016;30(3):818–824; doi: 10.1519/JSC.0000000000001150.
Kons RL, Ache-Dias J, Detanico D, Barth J, Dal Pupo J. Is vertical jump height an indicator of athletes’ power output in different sport modalities? J Strength Cond Res. 2018;32(3):708–715; doi: 10.1519/JSC.0000000000001817.
Sterkowicz S. A test of special motor fitness in judo [in Polish]. Antropomotoryka. 1995;12(13):29–44.
Buchheit M, Bishop D, Haydar B, Nakamura FY, Ahmaidi S. Physiological responses to shuttle repeatedsprint running. Int J Sports Med. 2010;31(6):402–409; doi: 10.1055/s-0030-1249620.
Tanner JM. Fallacy of per-weight and per-surface area standards, and their relation to spurious correlation. J Appl Physiol. 1949;2(1):1–15; doi: 10.1152/jappl.1949.2.1.1.
Atkins SJ. Normalizing expressions of strength in elite rugby league players. J Strength Cond Res. 2004;18(1):53–58; doi: 10.1519/1533-4287(2004)018<0053:neosie>2.0.co;2.
Batterham AM, George KP. Allometric modeling does not determine a dimensionless power function ratio for maximal muscular function. J Appl Physiol. 1997;83(6):2158–2166; doi: 10.1152/jappl.1997.83.6.2158.
Hopkins WG. A scale of magnitudes for effect statistics. Sportscience. 2002. Available from: https://www.sportsci.org/resou....
Gathercole R, Sporer B, Stellingwerff T, Sleivert G. Alternative countermovement-jump analysis to quantify acute neuromuscular fatigue. Int J Sports Physiol Perform. 2015;10(1):84–92; doi: 10.1123/ijspp.2013-0413.
Dal Pupo J, Arins FB, Antonacci Guglielmo LG, da Silva RCR, Pereira Moro AR, dos Santos SG. Physiological and neuromuscular indices associated with sprint running performance. Res Sports Med. 2013;21(2):124–135; doi: 10.1080/15438627.2012.757225.
Detanico D, Dal Pupo J, Graup S, dos Santos SG. Vertical jump performance and isokinetic torque discriminate advanced and novice judo athletes. Kinesiology. 2016;48(2):223–228; doi: 10.26582/k.48.2.8.
Sattler T, Hadžić V, Dervišević E, Markovic G. Vertical jump performance of professional male and female volleyball players: effects of playing position and competition level. J Strength Cond Res. 2015;29(6):1486–1493; doi: 10.1519/JSC.0000000000000781.
Detanico D, Dal Pupo J, Franchini E, dos Santos SG. Relationship of aerobic and neuromuscular indexes with specific actions in judo. Sci Sports. 2012;27(1):16–22; doi: 10.1016/j.scispo.2011.01.010.
Monteiro LF, Massuça LM, García JG, Carratala V, Proença J. Plyometric muscular action tests in judo- and non-judo athletes. Isokinet Exerc Sci. 2011;19(4):287–293; doi: 10.3233/IES-2011-0429.
Sales MM, Maciel AP, da Silva Aguiar S, Asano RY, Motta-Santos D, Villa Nova de Moraes JF, et al. Vertical jump is strongly associated to running-based anaerobic sprint test in teenage futsal male athletes. Sports. 2018;6(4):129; doi: 10.3390/sports6040129.
Loturco I, Pereira LA, Kobal R, Cal Abad CC, Fernandes V, Ramirez-Campillo R, et al. Portable force plates: a viable and practical alternative to rapidly and accurately monitor elite sprint performance. Sports. 2018; 6(3):61; doi: 10.3390/sports6030061.
Nicol C, Avela J, Komi PV. The stretch-shortening cycle: a model to study naturally occurring neuromuscular fatigue. Sports Med. 2006;36(11):977–999; doi: 10.2165/00007256-200636110-00004.
Jandova S, Musilek M, Martin AJ, Cochrane D, Rozkovec J. Take-off efficiency: transformation of mechanical work into kinetic energy during the Bosco test. Hum Mov. 2017;18(3):34–39; doi: 10.1515/humo-2017-0023.
Journals System - logo
Scroll to top