ORIGINAL PAPER
Validity of self-reporting of gait alteration after tap test among patients with idiopathic normal pressure hydrocephalus
 
More details
Hide details
1
Faculty of Physical Therapy, Mahidol University, Nakhon Pathom, Thailand
 
2
Division of Neurosurgery, Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
 
3
Division of Neurology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; NANOTEC-Mahidol University Center of Excellence in Nanotechnology for Cancer Diagnosis and Treatment, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
 
4
Department of Radiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
 
5
Department of Preventive and Social Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
 
 
Submission date: 2019-12-23
 
 
Acceptance date: 2020-08-06
 
 
Publication date: 2021-08-17
 
 
Hum Mov. 2022;23(1):96-104
 
KEYWORDS
TOPICS
ABSTRACT
Purpose:
The study aimed to examine the validity of self-reporting as an additional method to indicate gait alteration among patients with idiopathic normal pressure hydrocephalus. The score from self-reporting of gait alteration was validated with the data obtained from gait pressure measuring plate. In addition, temporo-spatial gait parameters among 3 groups classified by overall gait improvement (no change, slight, and good) were compared.

Methods:
This study employed a cross-sectional design and investigated 31 patients with idiopathic normal pressure hydrocephalus. Gait performance was determined by a gait pressure measuring plate before and 24 hours after a tap test. Patients rated the changed score for gait behaviours using a questionnaire once on the day after the tap test. Criterion validity of the changed scores from patients’ self-reporting and data from the gait pressure measuring plate was examined. In addition, temporo-spatial gait parameters were compared among 3 groups with one-way analysis of variance and the Bonferroni posthoc test to determine pairwise difference.

Results:
Significant correlations were found for the temporo-spatial gait parameters between data from self-reporting and the gait pressure measuring plate. Comparisons of temporo-spatial gait parameters among groups demonstrated significant differences in all parameters.

Conclusions:
Gait alteration identified by self-reporting was valid with gait performance measured by the gait pressure measuring plate. To achieve timely and appropriate medical management, we recommend health care professionals to request patients and caregivers to recognize gait alterations in assisting the disease progression identification.

REFERENCES (38)
1.
Hakim S, Adams RD. The special clinical problem of symptomatic hydrocephalus with normal cerebrospinal fluid pressure. Observations on cerebrospinal fluid hydrodynamics. J Neurol Sci. 1965;2(4):307–327; doi: 10.1016/0022-510x(65)90016-x.
 
2.
Graff-Radford NR. Normal pressure hydrocephalus. Neurol Clin. 2007;25(3):809–832, vii–viii; doi: 10.1016/j.ncl.2007.03.004.
 
3.
Bräutigam K, Vakis A, Tsitsipanis C. Pathogenesis of idiopathic normal pressure hydrocephalus: a review of knowledge. J Clin Neurosci. 2019;61:10–13; doi: 10.1016/j.jocn.2018.10.147.
 
4.
Siedlecki SL. Normal pressure hydrocephalus: are you missing the signs? J Gerontol Nurs. 2008;34(2):27–33; doi: 10.3928/00989134-20080201-11.
 
5.
Nassar BR, Lippa CF. Idiopathic normal pressure hydrocephalus: a review for general practitioners. Gerontol Geriatr Med. 2016;2:2333721416643702; doi: 10.1177/2333721416643702.
 
6.
Urban M, Rabe-Jabłońska J. Undiagnosed normal pressure hydrocephalus as a cause of diagnostic difficulties in a patient with depression. J Psychiatr Pract. 2013;19(6):501–504; doi: 10.1097/01.pra.0000438191.04786.5f.
 
7.
Baltatanu D, Berteanu M. Idiopathic normal pressure hydrocephalus – what we know. Maedica. 2019;14(2):161–164; doi: 10.26574/maedica.2019.14.2.161.
 
8.
Kuriyama N, Miyajima M, Nakajima M, Kurosawa M, Fukushima W, Watanabe Y, et al. Nationwide hospital- based survey of idiopathic normal pressure hydrocephalus in Japan: epidemiological and clinical characteristics. Brain Behav. 2017;7(3):e00635; doi: 10.1002/brb3.635.
 
9.
Toma AK, Tarnaris A, Kitchen ND, Watkins LD. Working towards patient oriented outcome assessment in normal pressure hydrocephalus, what is the most important? Acta Neurochir. 2011;153(1):177–180; doi: 10.1007/s00701-010-0781-8.
 
10.
Rosseau G. Normal pressure hydrocephalus. Dis Mon. 2011;57(10):615–624; doi: 10.1016/j.disamonth.2011.08.023.
 
11.
Marmarou A, Black P, Bergsneider M, Klinge P, Relkin N, International NPH Consultant Group. Guidelines for management of idiopathic normal pressure hydrocephalus: progress to date. Acta Neurochir Suppl. 2005;95:237–240; doi: 10.1007/3-211-32318-x_48.
 
12.
Bugalho P, Guimarães J. Gait disturbance in normal pressure hydrocephalus: a clinical study. Parkinsonism Relat Disord. 2007;13(7):434–437; doi: 10.1016/j.parkreldis.2006.08.007.
 
13.
Nowak DA, Topka HR. Broadening a classic clinical triad: the hypokinetic motor disorder of normal pressure hydrocephalus also affects the hand. Exp Neurol. 2006;198(1):81–87; doi: 10.1016/j.expneurol.2005.11.003.
 
14.
Stolze H, Kuhtz-Buschbeck JP, Drücke H, Jöhnk K, Diercks C, Palmié S, et al. Gait analysis in idiopathic normal pressure hydrocephalus – which parameters respond to the CSF tap test? Clin Neurophysiol. 2000;111(9):1678–1686; doi: 10.1016/s1388-2457(00)00362-x.
 
15.
Relkin N, Marmarou A, Klinge P, Bergsneider M, Black PM. Diagnosing idiopathic normal-pressure hydrocephalus. Neurosurgery. 2005;57(3 Suppl.):4–16; doi: 10.1227/01.neu.0000168185.29659.c5.
 
16.
Kuba H, Inamura T, Ikezaki K, Inoha S, Nakamizo A, Shono T, et al. Gait disturbance in patients with low pressure hydrocephalus. J Clin Neurosci. 2002;9(1):33–36; doi: 10.1054/jocn.2001.1010.
 
17.
Soelberg Sørensen P, Jansen EC, Gjerris F. Motor disturbances in normal-pressure hydrocephalus. Special reference to stance and gait. Arch Neurol. 1986;43(1):34–38; doi: 10.1001/archneur.1986.00520010030016.
 
18.
Stolze H, Kuhtz-Buschbeck JP, Drücke H, Jöhnk K, Illert M, Deuschl G. Comparative analysis of the gait disorder of normal pressure hydrocephalus and Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2001;70(3):289–297; doi: 10.1136/jnnp.70.3.289.
 
19.
Gallagher R, Bateman G, Marquez J, Osmotherly P. Are gait changes linked to CSF flow changes in the sagittal sinus? Neuroradiology. 2019;61(6):659–666; doi: 10.1007/s00234-019-02192-2.
 
20.
Ishikawa M, Yamada S, Yamamoto K. Early and delayed assessments of quantitative gait measures to improve the tap test as a predictor of shunt effectiveness in idiopathic normal pressure hydrocephalus. Fluids Barriers CNS. 2016;13(1):20; doi: 10.1186/s12987-016-0044-z.
 
21.
Schniepp R, Trabold R, Romagna A, Akrami F, Hesselbarth K, Wuehr M, et al. Walking assessment after lumbar puncture in normal-pressure hydrocephalus: a delayed improvement over 3 days. J Neurosurg. 2017;126(1):148–157; doi: 10.3171/2015.12.JNS151663.
 
22.
Ravdin LD, Katzen HL, Jackson AE, Tsakanikas D, Assuras S, Relkin NR. Features of gait most responsive to tap test in normal pressure hydrocephalus. Clin Neurol Neurosurg. 2008;110(5):455–461; doi: 10.1016/j.clineuro.2008.02.003.
 
23.
Bugalho P, Alves L, Miguel R. Gait dysfunction in Parkinson’s disease and normal pressure hydrocephalus: a comparative study. J Neural Transm. 2013;120(8):1201–1207; doi: 10.1007/s00702-013-0975-3.
 
24.
Abram K, Bohne S, Bublak P, Karvouniari P, Klingner CM, Witte OW, et al. The effect of spinal tap test on different sensory modalities of postural stability in idiopathic normal pressure hydrocephalus. Dement Geriatr Cogn Dis Extra. 2016;6(3):447–457; doi: 10.1159/000450602.
 
25.
Bovonsunthonchai S, Witthiwej T, Ngamsombat C, Sathornsumetee S, Vachalathiti R, Muangpaisan W, et al. Effect of spinal tap test on the performance of sit-to-stand, walking, and turning in patients with idiopathic normal pressure hydrocephalus. Nagoya J Med Sci. 2018;80(1):53–60; doi: 10.18999/nagjms.80.1.53.
 
26.
Montgomery GK, Reynolds NC Jr. Compliance, reliability, and validity of self-monitoring for physical disturbances of Parkinson’s disease. The Parkinson’s Symptom Diary. J Nerv Ment Dis. 1990;178(10):636–641; doi: 10.1097/00005053-199010000-00004.
 
27.
Mori E, Ishikawa M, Kato T, Kazui H, Miyake H, Miyajima M, et al. Guidelines for management of idiopathic normal pressure hydrocephalus: second edition. Neurol Med Chir. 2012;52(11):775–809; doi: 10.2176/nmc.52.775.
 
28.
Agostini V, Lanotte M, Carlone M, Campagnoli M, Azzolin I, Scarafia R, et al. Instrumented gait analysis for an objective pre-/postassessment of tap test in normal pressure hydrocephalus. Arch Phys Med Rehabil. 2015;96(7):1235–1241; doi: 10.1016/j.apmr.2015.02.014.
 
29.
Portney LG, Watkins MP. Foundation of clinical research: applications to practice, 2nd ed. Pearson; 2000.
 
30.
Edwards P. Questionnaires in clinical trials: guidelines for optimal design and administration. Trials. 2010;11:2; doi: 10.1186/1745-6215-11-2.
 
31.
Snyder CF, Watson ME, Jackson JD, Cella D, Halyard MY. Patient-reported outcome instrument selection: designing a measurement strategy. Value Health. 2007; 10(Suppl. 2):S76–S85; doi: 10.1111/j.1524-4733.2007.00270.x.
 
32.
Tang A, Eng JJ, Rand D. Relationship between perceived and measured changes in walking after stroke. J Neurol Phys Ther. 2012;36(3):115–121; doi: 10.1097/NPT.0b013e318262dbd0.
 
33.
Herssens N, Verbecque E, Hallemans A, Vereeck L, Van Rompaey V, Saeys W. Do spatiotemporal parameters and gait variability differ across the lifespan of healthy adults? A systematic review. Gait Posture. 2018;64:181–190; doi: 10.1016/j.gaitpost.2018.06.012.
 
34.
Malm J, Graff-Radford NR, Ishikawa M, Kristensen B, Leinonen V, Mori E, et al. Influence of comorbidities in idiopathic normal pressure hydrocephalus – research and clinical care. A report of the ISHCSF task force on comorbidities in INPH. Fluids Barriers CNS. 2013;10(1):22; doi: 10.1186/2045-8118-10-22.
 
35.
Gallagher R, Marquez J, Osmotherly P. Gait and balance measures can identify change from a cerebrospinal fluid tap test in idiopathic normal pressure hydrocephalus. Arch Phys Med Rehabil. 2018;99(11):2244–2250; doi: 10.1016/j.apmr.2018.03.018.
 
36.
Lewek MD, Sykes R 3rd. Minimal detectable change for gait speed depends on baseline speed in individuals with chronic stroke. J Neurol Phys Ther. 2019;43(2):122–127; doi: 10.1097/NPT.0000000000000257.
 
37.
Ries JD, Echternach JL, Nof L, Gagnon Blodgett M. Test-retest reliability and minimal detectable change scores for the timed “up & go” test, the six-minute walk test, and gait speed in people with Alzheimer disease. Phys Ther. 2009;89(6):569–579; doi: 10.2522/ptj.20080258.
 
38.
Almarwani M, Perera S, VanSwearingen JM, Sparto PJ, Brach JS. The test-retest reliability and minimal detectable change of spatial and temporal gait variability during usual over-ground walking for younger and older adults. Gait Posture. 2016;44:94–99; doi: 10.1016/j.gaitpost.2015.11.014.
 
eISSN:1899-1955
Journals System - logo
Scroll to top