REVIEW PAPER
Validity and reliability of inertial measurement units for jump height estimations: a systematic review
 
More details
Hide details
1
Escola Superior Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Viana do Castelo, Portugal
 
2
Research Center in Sports Performance, Recreation, Innovation and Technology, Melgaço, Portugal
 
3
Instituto de Telecomunicações, Delegação da Covilhã, Covilhã, Portugal
 
4
Department of Physical Education and Special Motricity, Transilvania University of Brasov, Brasov, Romania
 
5
Department of Physical Education and Sport Science, Al-Kitab University, Kirkuk, Iraq
 
6
Faculty of Sport Sciences, Gazi University, Ankara, Turkey
 
7
Faculty of Sports Sciences, University of Murcia, San Javier, Spain
 
8
Department of Physical Education and Sport, University of the Basque Country, Vitoria-Gasteiz, Spain
 
 
Submission date: 2021-09-07
 
 
Acceptance date: 2021-11-24
 
 
Publication date: 2022-01-24
 
 
Hum Mov. 2022;23(4):1-20
 
KEYWORDS
TOPICS
ABSTRACT
Inertial measurement units (IMUs) have been extensively used for measuring human motion. One particular outcome of interest in sports is vertical jump height, which is assessed in specific performance tests or actions occurring in training or match scenarios. This systematic review aimed to (1) identify and summarize studies that have examined the validity of wearable wireless IMUs for measuring jump height and (2) identify and summarize studies that have examined the reliability of wearable wireless IMUs for measuring jump height. A systematic review of the Cochrane Library, EBSCO, PubMed, SPORTDiscus, and Web of Science databases was performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. From the 596 studies initially identified, 30 were fully reviewed, and their outcome measures were extracted and analysed. Among the 16 different IMU models, 15 were considered valid, with only one device not validated. Of the 7 IMUs that were tested for reliability, all were considered reliable for measuring jump height. In general, however, despite these findings, IMUs are not considered accurate enough to detect small changes in performance. Also, generalizations were not possible for athletic populations given the lack of studies with such samples.
 
REFERENCES (62)
1.
Eagles AN, Sayers MGL, Bousson M, Lovell DI. Current methodologies and implications of phase identification of the vertical jump: a systematic review and meta-analysis. Sports Med. 2015;45(9):1311–1323; doi: 10.1007/s40279-015-0350-7.
 
2.
Watkins CM, Barillas SR, Wong MA, Archer DC, Dobbs IJ, Lockie RG, et al. Determination of vertical jump as a measure of neuromuscular readiness and fatigue. J Strength Cond Res. 2017;31(12):3305–3310; doi: 10.1519/JSC.0000000000002231.
 
3.
Petrigna L, Karsten B, Marcolin G, Paoli A, D’Antona G, Palma A, et al. A review of countermovement and squat jump testing methods in the context of public health examination in adolescence: reliability and feasibility of current testing procedures. Front Physiol. 2019;10:1384; doi: 10.3389/fphys.2019.01384.
 
4.
Van Hooren B, Zolotarjova J. The difference between countermovement and squat jump performances: a review of underlying mechanisms with practical applications. J Strength Cond Res. 2017;31(7):2011–2020; doi: 10.1519/JSC.0000000000001913.
 
5.
Balsalobre-Fernández C, Tejero-González CM, del Campo-Vecino J, Bavaresco N. The concurrent validity and reliability of a low-cost, high-speed camera-based method for measuring the flight time of vertical jumps. J Strength Cond Res. 2014;28(2):528–533; doi: 10.1519/JSC.0b013e318299a52e.
 
6.
Mathieu B, Peeters A, Piscione J, Lacome M. Usefulness of typical tests of short-duration maximal effort used to assess players readiness to perform. Sport Perform Sci Rep. 2017;3(1):1–3.
 
7.
Farias DL, Teixeira TG, Madrid B, Pinho D, Boullosa DA, Prestes J. Reliability of vertical jump performance evaluated with contact mat in elderly women. Clin Physiol Funct Imaging. 2013;33(4):288–292; doi: 10.1111/cpf.12026.
 
8.
Glatthorn JF, Gouge S, Nussbaumer S, Stauffacher S, Impellizzeri FM, Maffiuletti NA. Validity and reliability of Optojump photoelectric cells for estimating vertical jump height. J Strength Cond Res. 2011;25(2):556–560; doi: 10.1519/JSC.0b013e3181ccb18d.
 
9.
Moir GL. Three different methods of calculating vertical jump height from force platform data in men and women. Meas Phys Educ Exerc Sci. 2008;12(4):207–218; doi: 10.1080/10913670802349766.
 
10.
Wadhi T, Rauch JT, Tamulevicius N, Andersen JC, De Souza EO. Validity and reliability of the GymAware linear position transducer for squat jump and counter-movement jump height. Sports. 2018;6(4):177; doi: 10.3390/sports6040177.
 
11.
MacDonald K, Bahr R, Baltich J, Whittaker JL, Meeuwisse WH. Validation of an inertial measurement unit for the measurement of jump count and height. Phys Ther Sport. 2017;25:15–19; doi: 10.1016/j.ptsp.2016.12.001.
 
12.
McMaster DT, Tavares F, O’Donnell S, Driller M. Validity of vertical jump measurement systems. Meas Phys Educ Exerc Sci. 2021;25(2):95–100; doi: 10.1080/1091367X.2020.1835664.
 
13.
Nam Y, Kim Y, Lee J. Sleep monitoring based on a triaxial accelerometer and a pressure sensor. Sensors. 2016;16(5):750; doi: 10.3390/s16050750.
 
14.
Clemente FM, Akyildiz Z, Pino-Ortega J, Rico-González M. Validity and reliability of the inertial measurement unit for barbell velocity assessments: a systematic review. Sensors. 2021;21(7):2511; doi: 10.3390/s21072511.
 
15.
Alanen AM, Räisänen AM, Benson LC, Pasanen K. The use of inertial measurement units for analyzing change of direction movement in sports: a scoping review. Int J Sports Sci Coach. 2021;16(6):1332–1353; doi: 10.1177/17479541211003064.
 
16.
Camomilla V, Bergamini E, Fantozzi S, Vannozzi G. Trends supporting the in-field use of wearable inertial sensors for sport performance evaluation: a systematic review. Sensors. 2018;18(3):873; doi: 10.3390/s18030873.
 
17.
Skazalski C, Whiteley R, Hansen C, Bahr R. A valid and reliable method to measure jump-specific training and competition load in elite volleyball players. Scand J Med. Sci Sports. 2018;28(5):1578–1585; doi: 10.1111/sms.13052.
 
18.
Benson LC, Tait TJ, Befus K, Choi J, Hillson C, Stilling C, et al. Validation of a commercially available inertial measurement unit for recording jump load in youth basketball players. J Sports Sci. 2020;38(8):928–936; doi: 10.1080/02640414.2020.1737360.
 
19.
Charlton PC, Kenneally-Dabrowski C, Sheppard J, Spratford W. A simple method for quantifying jump loads in volleyball athletes. J Sci Med Sport. 2017;20(3):241–245; doi: 10.1016/j.jsams.2016.07.007.
 
20.
Rossi A, Pappalardo L, Cintia P, Pedreschi D, Iaia FM, Alberti G. The importance of GPS features to describe elite football training. SISMES Conference. 2016;12(Suppl.1):27–28.
 
21.
Ahmad N, Ghazilla RAR, Khairi NM, Kasi V. Reviews on various inertial measurement unit (IMU) sensor applications. Int J Signal Process Syst. 2013;1(2):256–262; doi: 10.12720/ijsps.1.2.256-262.
 
22.
Thompson SW, Rogerson D, Dorrell HF, Ruddock A, Barnes A. The reliability and validity of current technologies for measuring barbell velocity in the freeweight back squat and power clean. Sports. 2020;8(7):94; doi: 10.3390/sports8070094.
 
23.
Aughey RJ. Applications of GPS technologies to field sports. Int J Sports Physiol Perform. 2011;6(3):295–310; doi: 10.1123/ijspp.6.3.295.
 
24.
O’Donoghue P, Papadimitriou K, Gourgoulis V, Haralambis K. Statistical methods in performance analysis: an example from international soccer. Int J Perform Anal Sport. 2012;12(1):144–155; doi: 10.1080/24748668.2012.11868590.
 
25.
Picerno P, Camomilla V, Capranica L. Countermovement jump performance assessment using a wearable 3D inertial measurement unit. J Sports Sci. 2011;29(2):139–146; doi: 10.1080/02640414.2010.523089.
 
26.
Rantalainen T, Gastin PB, Spangler R, Wundersitz D. Concurrent validity and reliability of torso-worn inertial measurement unit for jump power and height estimation. J Sports Sci. 2018;36(17):1937–1942; doi: 10.1080/02640414.2018.1426974.
 
27.
McGrath J, Neville J, Stewart T, Cronin J. Upper body activity classification using an inertial measurement unit in court and field-based sports: a systematic review. Proc Inst Mech Eng P J Sport Eng Technol. 2021;235(2):83–95; doi: 10.1177/1754337120959754.
 
28.
Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097; doi: 10.1371/journal.pmed.1000097.
 
29.
Cochrane Consumers and Communication. Data extraction template for included studies. 2016.
 
30.
O’Reilly M, Caulfield B, Ward T, Johnston W, Doherty C. Wearable inertial sensor systems for lower limb exercise detection and evaluation: a systematic review. Sports Med. 2018;48(5):1221–1246; doi: 10.1007/s40279-018-0878-4.
 
31.
Dowling AV, Favre J, Andriacchi TP. A wearable system to assess risk for anterior cruciate ligament injury during jump landing: measurements of temporal events, jump height, and sagittal plane kinematics. J Biomech Eng. 2011;133(7):071008; doi: 10.1115/1.4004413.
 
32.
Gageler HW, Wearing S, James AD. Automatic jump detection method for athlete monitoring and performance in volleyball. Int J Perform Anal Sport. 2015;15(1):284–296; doi: 10.1080/24748668.2015.11868793.
 
33.
Grainger M, Weisberg A, Stergiou P, Katz L. Comparison of two methods in the estimation of vertical jump height. J Hum Sport Exerc. 2020;15(3):623–632; doi: 10.14198/jhse.2020.153.12.
 
34.
Heredia-Jimenez J, Orantes-Gonzalez E. Comparison of three different measurement systems to assess the vertical jump height. Rev Bras Med Esporte. 2020;26(2):143–146; doi: 10.1590/1517-869220202602185305.
 
35.
Hojka V, Tufano JJ, Malý T, Šťastný P, Jebavý R, Feher J, et al. Concurrent validity of Myotest for assessing explosive strength indicators in countermovement jump. Acta Gymnica. 2018;48(3):95–102; doi: 10.5507/ag.2018.013.
 
36.
Lesinski M, Muehlbauer T, Granacher U. Concurrent validity of the Gyko inertial sensor system for the assessment of vertical jump height in female sub-elite youth soccer players. BMC Sports Sci Med Rehabil. 2016;8:35; doi: 10.1186/s13102-016-0061-x.
 
37.
Magnúsdóttir Á, Þorgilsson B, Karlsson B. Comparing three devices for jump height measurement in a heterogeneous group of subjects. J Strength Cond Res. 2014;28(10):2837–2844; doi: 10.1519/JSC.0000000000000464.
 
38.
Mahmoud I, Othman AAA, Abdelrasoul E, Stergiou P, Katz L. The reliability of a real time wearable sensing device to measure vertical jump. Procedia Eng. 2015;112:467–472; doi: 10.1016/j.proeng.2015.07.226.
 
39.
Martínez-Martí F, González-Montesinos JL, Morales DP, Santos JRF, Castro-Piñero J, Carvajal MA, et al. Validation of instrumented insoles for measuring height in vertical jump. Int J Sports Med. 2016;37(5):374–381; doi: 10.1055/s-0035-1565137.
 
40.
Montoye AHK, Mitrzyk J. Validity of the Blast Athletic Performance monitor for assessing vertical jump height in female volleyball players. Meas Phys Educ Exerc Sci. 2019;23(2):99–109; doi: 10.1080/1091367X.2018.1539739.
 
41.
Rago V, Brito J, Figueiredo P, Carvalho T, Fernandes T, Fonseca P, et al. Countermovement jump analysis using different portable devices: implications for field testing. Sports. 2018;6(3):91; doi: 10.3390/sports6030091.
 
42.
Rantalainen T, Hesketh KD, Rodda C, Duckham RL. Validity of hip-worn inertial measurement unit compared to jump mat for jump height measurement in adolescents. Scand J Med Sci Sports. 2018;28(10):2183–2188; doi: 10.1111/sms.13243.
 
43.
Spangler R, Rantalainen T, Gastin PB, Wundersitz D. Inertial sensors are a valid tool to detect and consistently quantify jumping. Int J Sports Med. 2018;39(10):802–808; doi: 10.1055/s-0044-100793.
 
44.
Stanton R, Doering TM, Macgregor C, Borges N, Delvecchio L. Validity of a contact mat and accelerometric system to assess countermovement jump from flight time. Meas Phys Educ Exerc Sci. 2019;23(1):39–46; doi: 10.1080/1091367X.2018.1493593.
 
45.
Toft Nielsen E, Jørgensen PB, Mechlenburg I, Sørensen H. Validation of an inertial measurement unit to determine countermovement jump height. Asia Pac J Sports Med Arthrosc Rehabil Technol. 2019;16:8–13; doi: 10.1016/j.asmart.2018.09.002.
 
46.
Watkins CM, Maunder E, van den Tillaar R, Oranchuk DJ. Concurrent validity and reliability of three ultra-portable vertical jump assessment technologies. Sensors. 2020;20(24):7240; doi: 10.3390/s20247240.
 
47.
Zihajehzadeh S, Lee TJ, Lee JK, Hoskinson R, Park EJ. Integration of MEMS inertial and pressure sensors for vertical trajectory determination. IEEE Trans Instrum Meas. 2015;64(3):804–814; doi: 10.1109/TIM.2014.2359813.
 
48.
Wang J, Xu J, Shull PB. Vertical jump height estimation algorithm based on takeoff and landing identification via foot-worn inertial sensing. J Biomech Eng. 2018;140(3):034502; doi: 10.1115/1.4038740.
 
49.
Borges TO, Moreira A, Bacchi R, Finotti RL, Ramos M, Lopes CR, et al. Validation of the VERT wearable jump monitor device in elite youth volleyball players. Biol Sport. 2017;34(3):239–242; doi: 10.5114/biolsport.2017.66000.
 
50.
Brooks ER, Benson AC, Bruce LM. Novel technologies found to be valid and reliable for the measurement of vertical jump height with jump-and-reach testing. J Strength Cond Res. 2018;32(10):2838–2845; doi: 10.1519/JSC.0000000000002790.
 
51.
Casartelli N, Müller R, Maffiuletti NA. Validity and reliability of the Myotest accelerometric system for the assessment of vertical jump height. J Strength Cond Res. 2010;24(11):3186–3193; doi: 10.1519/JSC.0b013e3181d8595c.
 
52.
Choukou M-A, Laffaye G, Taiar R. Reliability and validity of an accelerometric system for assessing vertical jumping performance. Biol Sport. 2014;31(1):55–62; doi: 10.5604/20831862.1086733.
 
53.
Nickerson BS, Medrano NF, Perez GL, Narvaez SV, Carrillo J, Duque M. Inter-device reliability of wearable technology for quantifying jump height in collegiate athletes. Biol Sport. 2020;37(4):383–387; doi: 10.5114/biolsport.2020.96851.
 
54.
Nuzzo JL, Anning JH, Scharfenberg JM. The reliability of three devices used for measuring vertical jump height. J Strength Cond Res. 2011;25(9):2580–2590; doi: 10.1519/JSC.0b013e3181fee650.
 
55.
Choukou MA, Laffaye G, Taiar R. Validity of an accelerometric system for measuring force-time-based data during jumping tasks. Comput Methods Biomech Biomed Engin. 2013;16(Suppl. 1):84–85; doi: 10.1080/10255842.2013.815849.
 
56.
Silva R, Rico-González M, Lima R, Akyildiz Z, Pino-Ortega J, Clemente FM. Validity and reliability of mobile applications for assessing strength, power, velocity, and change-of-direction: a systematic review. Sensors. 2021;21(8):2623; doi: 10.3390/s21082623.
 
57.
Doğan NÖ. Bland-Altman analysis: a paradigm to understand correlation and agreement. Turk J Emerg Med. 2018;18(4):139–141; doi: 10.1016/j.tjem.2018.09.001.
 
58.
Giavarina D. Understanding Bland Altman analysis. Biochem Med. 2015;25(2):141–151; doi: 10.11613/BM.2015.015.
 
59.
Akenhead R, Nassis GP. Training load and player monitoring in high-level football: current practice and perceptions. Int J Sports Physiol Perform. 2016;11(5):587–593; doi: 10.1123/ijspp.2015-0331.
 
60.
Guerrero-Calderón B, Klemp M, Castillo-Rodriguez A, Morcillo JA, Memmert D. A new approach for trainingload quantification in elite-level soccer: contextual factors. Int J Sports Med. 2021;42(8):716–723; doi: 10.1055/a-1289-9059.
 
61.
Lacome M, Simpson B, Broad N, Buchheit M. Monitoring players’ readiness using predicted heart-rate responses to soccer drills. Int J Sports Physiol Perform. 2018;13(10):1273–1280; doi: 10.1123/ijspp.2018-0026.
 
62.
Hopkins WG. Measures of reliability in sports medicine and science. Sports Med. 2000;30(1):1–15; doi: 10.2165/00007256-200030010-00001.
 
eISSN:1899-1955
Journals System - logo
Scroll to top