ORIGINAL PAPER
Effects of training on bone metabolism in young athletes
 
More details
Hide details
1
Biology of Physical Activity, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
 
 
Submission date: 2020-05-13
 
 
Acceptance date: 2020-09-15
 
 
Publication date: 2021-06-22
 
 
Hum Mov. 2021;22(4):105-112
 
KEYWORDS
TOPICS
ABSTRACT
Purpose:
This study investigated the effects of two types of training on the bone formation marker of osteocalcin and the bone resorption marker of tartrate-resistant acid phosphatase isoenzyme 5b (TRAP5b) in young track and field boys and girls.

Methods:
The 14-year-old group (10 boys, 10 girls) performed first time an intensive and supervised 8-week plyometric training. In the 17-year-old group (13 athletic boys, 6 control boys, 12 athletic girls, 6 control girls), the normal many-sided track and field training lasted 6 months.

Results:
Significant increases were noticed in osteocalcin (p < 0.01) both in younger boys and girls. The 20-m sprint performance improved in girls (p < 0.01) and the countermovement jump height increased in boys (p < 0.001). Significant increases in 17-year-old boys and girls were observed after training in osteocalcin (p < 0.01), osteocalcin/TRAP5b ratio (p < 0.01 and p < 0.001), and the standing 5-jump (p < 0.05 and p < 0.01). Serum TRAP5b decreased both in boys (p < 0.05) and in girls (p < 0.01). The boys also improved the standing 5-jump (p < 0.01) and the 12-minute running test results (p < 0.05). In the combined group of all subjects, the correlation coefficient between TRAP5b and age was significant (r = –0.63, p < 0.001, n = 57).

Conclusions:
In practice, it is important to add plyometrics and other strength training in the training plans of young athletes, regardless of their events, to increase their bone metabolism and muscle strength.

REFERENCES (29)
1.
Seibel MJ. Biochemical markers of bone turnover: part I: biochemistry and variability. Clin Biochem Rev. 2005;26(4):97–122.
 
2.
Banfi G, Lombardi G, Colombini A, Lippi G. Bone metabolism markers in sports medicine. Sports Med. 2010; 40(8):697–714; doi: 10.2165/11533090-000000000- 00000.
 
3.
Hauschka PV, Lian JB, Cole DE, Gundberg CM. Osteocalcin and matrix Gla protein: vitamin K-dependent proteins in bone. Physiol Rev. 1989;69(3):990–1047; doi: 10.1152/physrev.1989.69.3.990.
 
4.
Maïmoun L, Coste O, Puech A-M, Peruchon E, Jaussent A, Paris F, et al. No negative impact of reduced leptin secretion on bone metabolism in male decathletes. Eur J Appl Physiol. 2008;102(3):343–351; doi: 10.1007/ s00421-007-0592-7.
 
5.
Lee NK, Karsenty G. Reciprocal regulation of bone and energy metabolism. Trends Endocrinol Metab. 2008; 19(5):161–166; doi: 10.1016/j.tem.2008.02.006.
 
6.
Krabbe S, Hummer L, Christiansen C. Longitudinal study of calcium metabolism in male puberty. II. Relationship between mineralization and serum testosterone. Acta Paediatr Scand. 1984;73(6):750–755; doi: 10.1111/j.1651-2227.1984.tb17770.x.
 
7.
Gilsanz V, Gibbens DT, Roe TF, Carlson M, Senac MO, Boechat MI, et al. Vertebral bone density in children: effect of puberty. Radiology. 1988;166(3):847–850; doi: 10.1148/radiology.166.3.3340782.
 
8.
López MR, Olmedillas H, de la Fuente FP, GómezCabello A, González-Agüero A, Casajús JA, et al. Bone metabolism in child and adolescent athletes: a systematic review [in Spanish]. Nutr Hosp. 2017;34(5):1469– 1481; doi: 10.20960/nh.1109.
 
9.
Halleen JM, Alatalo SL, Suominen H, Cheng S, Janckila AJ, Väänänen HK. Tartrate-resistant acid phosphatase 5b: a novel serum marker of bone resorption. J Bone Miner Res. 2000;15(7):1337–1345; doi: 10.1359/ jbmr.2000.15.7.1337.
 
10.
Yaziji H, Janckila AJ, Lear SC, Martin AW, Yam LT. Immunohistochemical detection of tartrate-resistant acid phosphatase in non-hematopoietic human tissues. Am J Clin Pathol. 1995;104(4):397–402; doi: 10.1093/ ajcp/104.4.397.
 
11.
Häkkinen K, Pakarinen A, Alén M, Komi PV. Serum hormones during prolonged training of neuromuscular performance. Eur J Appl Physiol Occup Physiol. 1985;53(4):287–293; doi: 10.1007/bf00422840.
 
12.
Durnin JV, Rahaman MM. The assessment of the amount of fat in the human body from measurements of skinfold thickness. Br J Nutr. 1967;21(3):681–689; doi: 10.1079/bjn19670070.
 
13.
Mero A, Komi PV. EMG, force, and power analysis of sprint-specific strength exercises. J Appl Biomech. 1994;10(1):1–13; doi: 10.1123/jab.10.1.1.
 
14.
Cooper KH. A means of assessing maximal oxygen intake: correlation between field and treadmill testing. JAMA. 1968;203(3):201–204; doi: 10.1001/jama.1968. 03140030033008.
 
15.
Keskinen KL, Häkkinen K, Kallinen M (eds.). Handbook of fitness testing [in Finnish]. Tampere: TammerPress Ltd.; 2004.
 
16.
Viitasalo JT, Aura O. Seasonal fluctuations of force production in high jumpers. Can J Appl Sport Sci. 1984; 9(4):209–213. 1.
 
17.
Komi PV, Bosco C. Utilization of stored elastic energy in leg extensor muscles by men and women. Med Sci Sports. 1978;10(4):261–265.
 
18.
Rogers RS, Dawson AW, Wang Z, Thyfault JP, Hinton PS. Acute response of plasma markers of bone turnover to a single bout of resistance training or plyometrics. J Appl Physiol. 2011;111(5):1353–1360; doi: 10.1152/japplphysiol.00333.2011.
 
19.
Huslab 2018. Osteocalcin in serum [in Finnish]. Available from: https://huslab.fi/cgi-bin/ohje..._ show.exe?assay=3594&terms=osteo.
 
20.
Bonjour JP, Chevalley T, Ammann P, Slosman D, Rizzoli R. Gain in bone mineral mass in prepubertal girls 3.5 years after discontinuation of calcium supplementation: a follow-up study. Lancet. 2001;358(9289):1208– 1212; doi: 10.1016/S0140-6736(01)06342-5.
 
21.
Avdagić SC, Barić IC, Keser I, Cecić I, Satalić Z, Bobić J, et al. Differences in peak bone density between male and female students. Arh Hig Rada Toksikol. 2009; 60(1):79–86; doi: 10.2478/10004-1254-60-2009-1886.
 
22.
Kelly PJ, Eisman JA, Sambrook PN. Interaction of genetic and environmental influences on peak bone density. Osteoporos Int. 1990;1(1):56–60; doi: 10.1007/ BF01880417.
 
23.
Krall EA, Dawson-Hughes B. Heritable and life-style determinants of bone mineral density. J Bone Miner Res. 1993;8(1):1–9; doi: 10.1002/jbmr.5650080102.
 
24.
LesterME, Urso ML, Evans RK, Pierce JR, Spiering BA, Maresh CM, et al. Influence of exercise mode and osteogenic index on bone biomarker responses during short-term physical training. Bone. 2009;45(4):768– 776; doi: 10.1016/j.bone.2009.06.001.
 
25.
Guadalupe-GrauA, Perez-Gomez J, Olmedillas H, Chavarren J, Dorato C, Santana A, et al. Strength training combined with plyometric jumps in adults: sex differences in fat-bone axis adaptations. J Appl Physiol. 2009; 106(4):1100–1111; doi: 10.1152/japplphysiol.91469.2008.
 
26.
Minkin C. Bone acid phosphatase: tartrate-resistant acid phosphatase as a marker of osteoclast function. Calcif Tissue Int. 1982;34(3):285–290; doi: 10.1007/BF024 11252.
 
27.
Kerschan-SchindlK, Thalmann M, Sodeck GH, Skenderi K, Matalas AL, Grampp S, et al. A 246-km continuous running race causes significant changes in bone metabolism. Bone. 2009;45(6):1079–1083; doi: 10.1016/ j.bone.2009.07.088.
 
28.
Huslab 2019. Testosterone in serum [in Finnish]. Available from: https://huslab.fi/cgi-bin/ohje.... exe?assay=2735&terms=testosterone.
 
29.
Amato A, Baldassano S, Cortis C, Cooper J, Proia P. Physical activity, nutrition, and bone health. Hum Mov. 2018;19(4):1–10; doi: 10.5114/hm.2018.77318.
 
eISSN:1899-1955
Journals System - logo
Scroll to top