REVIEW PAPER
Effects of physical exercise on metabolic syndrome in middle-aged and olderadults – a systematic review
 
More details
Hide details
1
Department of Biomedical Sciences, State University of Novi Pazar, Novi Pazar, Serbia
 
2
Montenegrin Sports Academy, Podgorica, Montenegro
 
3
Faculty of Sport and Physical Education, University of Nis, Nis, Serbia
 
4
Department of Sports Recreation and Wellness, Symbiosis International (deemed university), Hyderabad Campus, Modallaguda, Nandigama, Rangareddy Dist, Hyderabad, Telangana, India
 
5
Faculty of Physical Activity and Recreation, Sports University of Tirana, Tirana, Albania
 
 
Submission date: 2025-05-22
 
 
Acceptance date: 2025-10-01
 
 
Publication date: 2025-12-22
 
 
Corresponding author
Karuppasamy Govindasamy   

Department of Sports Recreation and Wellness, Symbiosis International (deemed university), Hyderabad Campus, Modallaguda, Nandigama, Rangareddy Dist, Hyderabad, 509217, Telangana, India
 
 
Hum Mov. 2025;26(4):1-14
 
KEYWORDS
TOPICS
ABSTRACT
Metabolic syndrome (MetS), characterised by abdominal obesity, hypertension, dyslipidemia, and insulin resistance, presents a growing public health concern, especially among middle-aged and older adults. This systematic review evaluates the effects of different physical exercise modalities, including aerobic training, resistance training, high-intensity interval training (HIIT), and combined programs, on MetS-related parameters, inflammation, and cardiometabolic risk factors. A total of 30 studies published between 2000 and 2025 involving participants aged 40 years and older were analysed. All studies reported positive changes in at least one outcome. Notably, reductions in C-reactive protein (CRP), interleukin-6 (IL-6), tumour necrosis factor-alpha (TNF-α), and increases in interleukin-10 (IL-10) were reported in 17, 12, 13, and 4 studies, respectively. Improvements in lipid profiles included increased HDL (7 studies), reduced LDL (3 studies), and decreased triglycerides (4 studies). Enhanced aerobic capacity (VO2max/VO2peak) was observed in 4 studies. Blood pressure improvements were found in 5 studies, while waist circumference reduction and better glycemic control (HbA1c, glucose, insulin) were noted in a few studies. Additional anti-inflammatory effects were reflected in reductions of IL-8 (3 studies) and IL-18 (2 studies). Despite these promising outcomes, inconsistencies regarding optimal exercise intensity and volume remain. Limitations such as small sample sizes and methodological variability highlight the need for more standardised and largescale research. This review reinforces the pivotal role of structured physical activity in managing MetS and advocates for personalised exercise interventions to enhance therapeutic efficacy.
REFERENCES (84)
1.
Rossi JLS, Barbalho SM, Reverete de Araujo R, Bechara MD, Sloan KP, Sloan LA. Metabolic syndrome and cardiovascular diseases: going beyond traditional risk factors. Diabetes Metab Res Rev. 2022;38(3):e3502; doi: 10.1002/dmrr.3502.
 
2.
Yao F, Bo Y, Zhao L, Li Y, Ju L, Fang H, Piao W, Yu D, Lao X. Prevalence and Influencing Factors of Metabolic Syndrome among Adults in China from 2015 to 2017. Nutrients. 2021;13(12):4475; doi: 10.3390/nu13124475.
 
3.
Silva PAB, Sacramento AJ, Carmo CID do, Silva LB, Silqueira SMF, Soares SM. Factors associated with metabolic syndrome in older adults: a population- based study. Rev Bras Enferm. 2019;72 (suppl 2):221–8; doi: 10.1590/0034-7167-2018- 0620.
 
4.
Kolovou GD, Anagnostopoulou KK, Salpea KD, Mikhailidis DP. The prevalence of metabolic syndrome in various populations. Am J Med Sci. 2007; 333(6):362–71; doi: 10.1097/MAJ.0b013e31806 5c3a1.
 
5.
Yousefabadi HA, Niyazi A, Alaee S, Fathi M, Rahimi GRM. Anti-inflammatory effects of exercise on metabolic syndrome patients: a systematic review and meta-analysis. Biol Res Nurs. 2021;23(2): 280–92; doi: 10.1177/1099800420958068.
 
6.
Hahn V, Halle M, Schmidt-Trucksass A, Rathmann W, Meisinger C, Mielck A. Physical activity and the metabolic syndrome in elderly German men and women: results from the populationbased KORA survey. Diabetes Care. 2009;32(3): 511–3; doi: 10.2337/dc08-1285.
 
7.
Turi BC, Codogno JS, Fernandes RA, Monteiro HL. Low levels of physical activity and metabolic syndrome: cross-sectional study in the Brazilian public health system. Cien Saude Colet. 2016;21(4): 1043–50; doi: 10.1590/1413-81232015214.230 42015.
 
8.
Senechal M, Bouchard DR, Dionne IJ, Brochu M. Lifestyle habits and physical capacity in patients with moderate or severe metabolic syndrome. Metab Syndr Relat Disord. 2012;10(3):232–40; doi: 10.1089/met.2011.0136.
 
9.
Broekhuizen LN, Boekholdt SM, Arsenault BJ, Despres J-P, Stroes ESG, Kastelein JJP, Khaw K-T, Wareham NJ. Physical activity, metabolic syndrome, and coronary risk: the EPIC-Norfolk prospective population study. Eur J Cardiovasc Prev Rehabil. 2011;18(2):209–17; doi: 10.1177/17418 26710389397.
 
10.
Bouchard C, Blair SN, Haskell WL (eds.). Physical activity and health. 2nd edition. Champaign: Human Kinetics; 2012; doi: 10.5040/9781492 595717.
 
11.
Dao HHH, Burns MJ, Kha R, Chow CK, Nguyen TN. The relationship between metabolic syndrome and frailty in older people: a systematic review and meta-analysis. Geriatrics. 2022;7(4): 76; doi: 10.3390/geriatrics7040076.
 
12.
Chase J-AD, Phillips LJ, Brown M. Physical activity intervention effects on physical function among community-dwelling older adults: a systematic review and meta-analysis. J Aging Phys Act. 2017;25(1):149–70; doi: 10.1123/japa.2016- 0040.
 
13.
Yang Y, Chen B, Deng M, Song H, Yu M. The prevalence of frailty among patients with metabolic syndrome: a systematic review and meta-analysis. Contemp Nurse. 2024;60(5):479–95; doi: 10.1080/ 10376178.2024.2360960.
 
14.
Ispoglou T, Wilson O, McCullough D, Aldrich L, Ferentinos P, Lyall G, Stavropoulos-Kalinoglou A, Duckworth L, Brown MA, Sutton L, Potts AJ, Archbold V, Hargreaves J, McKenna J. A narrative review of non-pharmacological strategies for managing sarcopenia in older adults with cardiovascular and metabolic diseases. Biology. 2023;12(7):892; doi: 10.3390/biology12070892.
 
15.
Smith LE, Van Guilder GP, Dalleck LC, Lewis NR, Dages AG, Harris NK. A Preliminary investigation into the frequency dose effects of high-intensity functional training on cardiometabolic health. J Sports Sci Med. 2023;22(4):688–99; doi: 10.520 82/jssm.2023.688.
 
16.
Montesi L, Moscatiello S, Malavolti M, Marzocchi R, Marchesini G. Physical activity for the prevention and treatment of metabolic disorders. Intern Emerg Med. 2013;8(8):655–66; doi: 10.1007/ s11739-013-0953-7.
 
17.
Stensvold D, Tjonna AE, Skaug E-A, Aspenes S, Stolen T, Wisloff U, Slordahl SA. Strength training versus aerobic interval training to modify risk factors of metabolic syndrome. J Appl Physiol. 2010;108(4):804–10; doi: 10.1152/japplphysiol. 00996.2009.
 
18.
Keating SE, Johnson NA, Mielke GI, Coombes JS. A systematic review and meta-analysis of interval training versus moderate-intensity continuous training on body adiposity. Obes Rev. 2017;18(8): 943–64; doi: 10.1111/obr.12536.
 
19.
Colberg SR, Sigal RJ, Yardley JE, Riddell MC, Dunstan DW, Dempsey PC, Horton E, Castorino K, Tate DF. Physical activity/exercise and diabetes: a position statement of the American Diabetes Association. Diabetes Care. 2016;39(11):2065– 79; doi: 10.2337/dc16-1728.
 
20.
Cameron AJ, Shaw JE, Zimmet PZ. The metabolic syndrome: prevalence in worldwide populations. Endocrinol Metab Clin North Am. 2004;33(2): 351–75; doi: 10.1016/j.ecl.2004.03.005.
 
21.
Angell SY, McConnell MV, Anderson CAM, Bibbins- Domingo K, Boyle DS, Capewell S, Ezzati M, de Ferranti S, Gaskin DJ, Goetzel RZ, Huffman MD, Jones M, Khan YM, Kim S, Kumanyika SK, McCray AT, Merritt RK, Milstein B, Mozaffarian D, Norris T, Roth GA, Sacco RL, Saucedo JF, Shay CM, Siedzik D, Saha S, Warner JJ. The American Heart Association 2030 Impact Goal: a presidential advisory from the American Heart Association. Circulation. 2020;141(9):e120–38; doi: 10.1161/CIR.0000000000000758.
 
22.
van Vliet-Ostaptchouk JV, Nuotio ML, Slagter SN, Doiron D, Fischer K, Foco L, Gaye A, Gogele M, Heier M, Hiekkalinna T, Joensuu A, Newby C, Pang C, Partinen E, Reischl E, Schwienbacher C, Tammesoo M-L, Swertz MA, Burton P, Ferretti V, Fortier I, Giepmans L, Harris JR, Hillege HL, Holmen J, Jula A, Kootstra-Ros JE, Kvaloy K, Holmen TL, Mannisto S, Metspalu A, Midthjell K, Murtagh MJ, Peters A, Pramstaller PP, Saaristo T, Salomaa V, Stolk RP, Uusitupa M, van der Harst P, van der Klauw MM, Waldenberger M, Perola M, Wolffenbuttel BH. The prevalence of metabolic syndrome and metabolically healthy obesity in Europe: a collaborative analysis of ten large cohort studies. BMC Endocr Disord. 2014;14:9; doi: 10.1186/1472-6823-14-9.
 
23.
Ranasinghe P, Mathangasinghe Y, Jayawardena R, Hills AP, Misra A. Prevalence and trends of metabolic syndrome among adults in the asia-pacific region: a systematic review. BMC Public Health. 2017;17:101; doi: 10.1186/s12889-017-4041-1.
 
24.
Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, Colagiuri S, Guariguata L, Motala AA, Ogurtsova K, Shaw JE, Bright D, Williams R; IDF Diabetes Atlas Committee. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas. 9th ed. Diabetes Res Clin Pract. 2019;157: 107843; doi: 10.1016/j.diabres.2019.107843.
 
25.
Azizi F, Salehi P, Etemadi A, Zahedi-Asl S. Prevalence of metabolic syndrome in an urban population: tehran lipid and glucose study. DiabetesRes Clin Pract. 2003;61(1):29–37; doi: 10.1016/ s0168-8227(03)00066-4.
 
26.
Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hrobjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, Moher D. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71; doi: 10.1136/ bmj.n71.
 
27.
Rethlefsen ML, Kirtley S, Waffenschmidt S, Ayala AP, Moher D, Page MJ, Koffel JB; PRISMA-S Group. PRISMA-S: an extension to the PRISMA Statement for Reporting Literature Searches in Systematic Reviews. Syst Rev. 2021;10(1):39; doi: 10.1186/s13643-020-01542-z.
 
28.
de Morton NA. The PEDro scale is a valid measure of the methodological quality of clinical trials: a demographic study. Aust J Physiother. 2009;55(2): 129–33; doi: 10.1016/s0004-9514(09)70043-1.
 
29.
Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther. 2003;83(8):713–21; doi:10.1093/ptj/83.8.713.
 
30.
Sonnenschein K, Horvath T, Mueller M, Markowski A, Siegmund T, Jacob C, Drexler H, Landmesser U. Exercise training improves in vivo endothelial repair capacity of early endothelial progenitor cells in subjects with metabolic syndrome. Eur J Cardiovasc Prev Rehabil. 2011;18(3):406–14; doi: 10.1177/1741826710389373.
 
31.
Oh E-G, Hyun SS, Kim SH, Bang S-Y, Chu SH, Jeon JY, Sook KMS. A randomized controlled trial of therapeutic lifestyle modification in rural women with metabolic syndrome: a pilot study. Metabolism. 2008;57(2):255–61; doi: 10.1016/j.metabol. 2007.09.009.
 
32.
Heiston EM, Eichner NZ, Gilbertson NM, Malin SK. Exercise improves adiposopathy, insulin sensitivity and metabolic syndrome severity independent of intensity. Exp Physiol. 2020;105(4): 632–640; doi: 10.1113/EP088158.
 
33.
Balducci S, Zanuso S, Nicolucci A, Fernando F, Cavallo S, Cardelli P, Fallucca S, Alessi E, Letizia C, Jimenez A, Fallucca F, Pugliese G. Anti-inflammatory effect of exercise training in subjects with type 2 diabetes and the metabolic syndrome is dependent on exercise modalities and independent of weight loss. Nutr Metab Cardiovasc Dis. 2010;20(8):608–17; doi: 10.1016/j.numecd.2009. 04.015.
 
34.
Oh EG, Bang SY, Hyun SS, Kim SH, Chu SH, Jeon JY, Im J-A, Lee MK, Lee JE. Effects of a 6-month lifestyle modification intervention on the cardiometabolic risk factors and health-related qualities of life in women with metabolic syndrome. Metabolism. 2010;59(7):1035–43; doi: 10.1016/j. metabol.2009.10.027.
 
35.
Kraus WE, Houmard JA, Duscha BD, Knetzger KJ, Wharton MB, McCartney JS, Bales CW, Henes S, Samsa GP, Otvos JD, Kulkarni KR, Slentz CA. Effects of the amount and intensity of exercise on plasma lipoproteins. N Engl J Med. 2002;347(19): 1483–92; doi: 10.1056/NEJMoa020194.
 
36.
DiPietro L, Dziura J, Yeckel CW, Neufer PD. Exercise and improved insulin sensitivity in older women: evidence of the enduring benefits of higher intensity training. J Appl Physiol. 2006;100(1): 142–9; doi: 10.1152/japplphysiol.00474.2005.
 
37.
Abd El-Kader SM, Al-Jiffri OH, Al-Shreef FM. Aerobic exercises alleviate symptoms of fatigue related to inflammatory cytokines in obese patients with type 2 diabetes. Afr Health Sci. 2015; 15(4):1142–8; doi: 10.4314/ahs.v15i4.13.
 
38.
Abd El-Kader SM, Saiem Al-Dahr MH. Weight loss improves biomarkers endothelial function and systemic inflammation in obese postmenopausal Saudi women. Afr Health Sci. 2016;16(2): 533–41; doi: 10.4314/ahs.v16i2.22.
 
39.
Kadoglou NPE, Iliadis F, Angelopoulou N, Perrea D, Ampatzidis G, Liapis CD, Alevizos M. The anti-inflammatory effects of exercise training in patients with type 2 diabetes mellitus. Eur J Cardiovasc Prev Rehabil. 2007;14(6):837–43; doi: 10.1097/HJR.0b013e3282efaf50.
 
40.
Kadoglou NPE, Vrabas IS, Sailer N, Kapelouzou A, Fotiadis G, Noussios G, Karayannacos PE, Angelopoulou N. Exercise ameliorates serum MMP-9 and TIMP-2 levels in patients with type 2 diabetes. Diabetes Metab. 2010;36(2):144–51; doi: 10.1016/ j.diabet.2009.11.004.
 
41.
Mora-Rodriguez R, Ramirez-Jimenez M, Fernandez- Elias VE, Guio de Prada MV, Morales-Palomo F, Pallares JG, Nelson RK, Ortega JF. Effects of aerobic interval training on arterial stiffness and microvascular function in patients with metabolic syndrome. J Clin Hypertens. 2018;20(1):11–8; doi: 10.1111/jch.13130.
 
42.
Sang H, Yao S, Zhang L, Li X, Yang N, Zhao J, Yanhong S, Ying Zhang, Xiaohong Lv, Yazhuo X, Shucun Q. Walk-run training improves the antiinflammation properties of high-density lipoprotein in patients with metabolic syndrome. J ClinEndocrinol Metab. 2015;100(3):870–9; doi: 10.12 10/jc.2014-2979.
 
43.
Slivovskaja I, Ryliskyte L, Serpytis P, Navickas R, Badarienė J, Celutkiene J, Puronaite R, Ryliskiene K, Cypiene A, Rinkuniene E, Sileikiene V, Petrauskiene B, Juocevicius A, Laucevicius A. Aerobic training effect on arterial stiffness in metabolic syndrome. Am J Med. 2018;131(2):148–55; doi: 10.1016/j.amjmed.2017.07.038.
 
44.
Donley DA, Fournier SB, Reger BL, DeVallance E, Bonner DE, Olfert IM, Frisbee JC, Chantler PD. Aerobic exercise training reduces arterial stiffness in metabolic syndrome. J Appl Physiol. 2014;116 (11):1396–404; doi: 10.1152/japplphysiol.00151. 2014.
 
45.
Saghebjoo M, Nezamdoost Z, Ahmadabadi F, Saffari I, Hamidi A. The effect of 12 weeks of aerobic training on serum levels high sensitivity Creactive protein, tumor necrosis factor-alpha, lipid profile and anthropometric characteristics in middle- age women patients with type 2 diabetes. Diabetes Metab Syndr. 2018;12(2):163–8; doi: 10.1016/ j.dsx.2017.12.008.
 
46.
Kim C-J, Kim D-J, Park H-R. Effects of a cardiovascular risk reduction intervention with psychobehavioral strategies for Korean adults with type 2 diabetes and metabolic syndrome. J Cardiovasc Nurs. 2011;26(2):117–128; doi: 10.1097/ JCN.0b013e3181ec02ae.
 
47.
Silva FM, Duarte-Mendes P, Teixeira AM, Soares CM, Ferreira JP. The effects of combined exercise training on glucose metabolism and inflammatory markers in sedentary adults: a systematic review and meta-analysis. Sci Rep. 2024;14(1): 1936; doi: 10.1038/s41598-024-51832-y.
 
48.
Greeley SJ, Martinez N, Campbell BI. The impact of high-intensity interval training on metabolic syndrome. Strength Cond J. 2013;35(2):63–5; doi: 10.1519/SSC.0b013e31827764da.
 
49.
Dadrass A, Mohamadzadeh Salamat K, Hamidi K, Azizbeigi K. Anti-inflammatory effects of vitamin D and resistance training in men with type 2 diabetes mellitus and vitamin D deficiency: a randomized, double-blinded, placebo-controlled clinical trial. J Diabetes Metab Disord. 2019;18(2): 323–31; doi: 10.1007/s40200-019-00416-z.
 
50.
Levinger I, Goodman C, Peake J, Garnham A, Hare DL, Jerums G, Selig S. Inflammation, hepatic enzymes and resistance training in individuals with metabolic risk factors. Diabet Med. 2009;26(3):220–7; doi: 10.1111/j.1464-5491.2009. 02679.x.
 
51.
Swift DL, Johannsen NM, Earnest CP, Blair SN, Church TS. Effect of exercise training modality on C-reactive protein in type 2 diabetes. Med Sci Sports Exerc. 2012;44(6):1028–34; doi: 10.1249 /MSS.0b013e31824526cc.
 
52.
Annibalini G, Lucertini F, Agostini D, Vallorani L, Gioacchini A, Barbieri E, Guescini M, Casadei L, Passalia A, Del Sal M, Piccoli G, Andreani M, Federici A, Stocchi V. Concurrent aerobic and resistance training has anti-inflammatory effects and increases both plasma and leukocyte levels of IGF-1 in late middle-aged type 2 diabetic patients. Oxid Med Cell Longev. 2017;2017:3937842; doi: 10.1155/2017/3937842.
 
53.
Stefanov T, Vekova A, Bonova I, Tzvetkov S, Kurktschiev D, Bluher M, Temelkova-Kurktschiev T. Effects of supervised vs non-supervised combined aerobic and resistance exercise programme on cardiometabolic risk factors. Cent Eur J Public Health. 2013;21(1):8–16; doi: 10.21101/cejph.a3801.
 
54.
Donges CE, Duffield R, Guelfi KJ, Smith GC, Adams DR, Edge JA. Comparative effects of single- mode vs. duration-matched concurrent exercise training on body composition, low-grade inflammation, and glucose regulation in sedentary, overweight, middle-aged men. Appl Physiol Nutr Metab. 2013;38(7):779–88; doi: 10.1139/apnm- 2012-0443.
 
55.
Jorge MLMP, de Oliveira VN, Resende NM, Paraiso LF, Calixto A, Diniz ALD, Resende ES, Ropelle ER, Carvalheira JB, Espindola FS, Jorge PT. The effects of aerobic, resistance, and combined exercise on metabolic control, inflammatory markers, adipocytokines, and muscle insulin signaling in patients with type 2 diabetes mellitus. Metabolism. 2011;60(9):1244–52; doi: 10.1016/j.metabol. 2011.01.006.
 
56.
Cooper JHF, Collins BEG, Adams DR, Robergs RA, Donges CE. Limited effects of endurance or interval training on visceral adipose tissue and systemic inflammation in sedentary middle-aged men. J Obes. 2016;2016:2479597; doi: 10.1155/ 2016/2479597.
 
57.
Nikseresht M, Agha-Alinejad H, Azarbayjani MA, Ebrahim K. Effects of nonlinear resistance and aerobic interval training on cytokines and insulin resistance in sedentary men who are obese. J Strength Cond Res. 2014;28(9):2560–8; doi: 10.1519/JSC.0000000000000441.
 
58.
Venojarvi M, Wasenius N, Manderoos S, Heinonen OJ, Hernelahti M, Lindholm H, Surakka J, Lindstrom J, Aunola S, Atalay M, Eriksson JG. Nordic walking decreased circulating chemerin and leptin concentrations in middle-aged men with impaired glucose regulation. Ann Med. 2013;45(2): 162–70; doi: 10.3109/07853890.2012.727020.
 
59.
Okura T, Nakata Y, Ohkawara K, Numao S, Katayama Y, Matsuo T, Tanaka K. Effects of aerobic exercise on metabolic syndrome improvement in response to weight reduction. Obesity. 2007;15(10): 2478–84; doi: 10.1038/oby.2007.294.
 
60.
dos Santos LL, Silva ATB, da Cruz MASP, da Rosa SE, Fortes MDSR, Nunes RAM, de Castro JBP, Linhares DG, dos Santos AOB, Cordeiro LS, Borba-Pinheiro CJ, Vale RGS. Effects of long and sprint high-intensity interval training on body mass composition, aerobic capacity, and biochemical markers of metabolic syndrome and liver damage in physical activity practitioners adults. Muscles Ligaments Tendons J. 2024;14(2):256– 68; doi: 10.32098/mltj.02.2024.04.
 
61.
Lavrencic A, Salobir BG, Keber I. Physical training improves flow-mediated dilation in patients with the polymetabolic syndrome. Arterioscler Thromb Vasc Biol. 2000;20(2):551–5; doi: 10.1161/ 01.ATV.20.2.551.
 
62.
Mcleod JC, Stokes T, Phillips SM. Resistance exercise training as a primary countermeasure to age-related chronic disease. Front Physiol. 2019; 10:645; doi: 10.3389/fphys.2019.00645.
 
63.
Lakka TA, Laaksonen DE. Physical activity in prevention and treatment of the metabolic syndrome. Appl Physiol Nutr Metab. 2007;32(1):76–88; doi: 10.1139/h06-113.
 
64.
Pedersen BK, Saltin B. Exercise as medicine – evidence for prescribing exercise as therapy in 26 different chronic diseases. Scand J Med Sci Sports. 2015;25:1–72; doi: 10.1111/sms.12581.
 
65.
Ingle L, Mellis M, Brodie D, Sandercock GR. Associations between cardiorespiratory fitness and the metabolic syndrome in British men. Heart. 2017;103(7):524–8; doi: 10.1136/heartjnl-2016- 310142.
 
66.
Da Silva MAR, Baptista LC, Neves RS, De Franca E, Loureiro H, Lira FS, Caperuto EC, Verissimo MT, Martins RA. The effects of concurrent training combining both resistance exercise and high-intensity interval training or moderate-intensity continuous training on metabolic syndrome. Front Physiol. 2020;11:572; doi: 10.3389/ fphys.2020.00572.
 
67.
Scuteri A, Najjar SS, Orru’ M, Usala G, Piras MG, Ferrucci L, Cao A, Schlessinger D, Uda M, Lakatta EG. The central arterial burden of the metabolic syndrome is similar in men and women: the SardiNIA Study. Eur Heart J. 2010;31(5):602– 13; doi: 10.1093/eurheartj/ehp491.
 
68.
Fournier SB, Reger BL, Donley DA, Bonner DE, Warden BE, Gharib W, Failinger CF, Olfert MD, Frisbee JC, Olfert IM, Chantler PD. Exercise reveals impairments in left ventricular systolic function in patients with metabolic syndrome. Exp Physiol. 2014;99(1):149–63; doi: 10.1113/expphysiol. 2013.075796.
 
69.
Nilsson PM, Boutouyrie P, Laurent S. Vascular aging: a tale of EVA and ADAM in cardiovascular risk assessment and prevention. Hypertension. 2009;54(1):3–10; doi: 10.1161/HYPERTENSIONAHA. 109.129114.
 
70.
Lewington S, Clarke R, Qizilbash N, Peto R, Collins R; Prospective Studies Collaboration. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet. 2002;360(9349):1903–13; doi: 10.1016/ s0140-6736(02)11911-8.
 
71.
Thijssen DHJ, de Groot PCE, Smits P, Hopman MTE. Vascular adaptations to 8-week cycling training in older men. Acta Physiol. 2007;190(3): 221–8; doi: 10.1111/j.1748-1716.2007.01685.x.
 
72.
Tanaka H, Seals DR, Monahan KD, Clevenger CM, DeSouza CA, Dinenno FA. Regular aerobic exercise and the age-related increase in carotid artery intima-media thickness in healthy men. J Appl Physiol. 2002;92(4):1458–64; doi: 10.1152/japplphysiol. 00824.2001.
 
73.
Green DJ, Maiorana A, O’Driscoll G, Taylor R. Effect of exercise training on endothelium-derived nitric oxide function in humans. J Physiol. 2004; 561(Pt 1):1–25; doi: 10.1113/jphysiol.2004.068197.
 
74.
Malin SK, Solomon TPJ, Blaszczak A, Finnegan S, Filion J, Kirwan JP. Pancreatic -cell function increases in a linear dose-response manner following exercise training in adults with prediabetes. Am J Physiol Endocrinol Metab. 2013;305(10): 1248–54; doi: 10.1152/ajpendo.00260.2013.
 
75.
Coker RH, Hays NP, Williams RH, Brown AD, Freeling SA, Kortebein PM, Sullivan DH, Starling RD, Evans WJ. Exercise-induced changes in insulin action and glycogen metabolism in elderly adults. Med Sci Sports Exerc. 2006;38(3):433–8; doi: 10.1249/01.mss.0000191417.48710.11.
 
76.
McGarrah RW, Slentz CA, Kraus WE. The effect of vigorous- versus moderate-intensity aerobic exercise on insulin action. Curr Cardiol Rep. 2016; 18(12):117; doi: 10.1007/s11886-016-0797-7.
 
77.
Mezghani N, Ammar A, Boukhris O, Abid R, Hadadi A, Alzahrani TM, Trabelsi O, Boujelbane MA, Masmoudi L, Ouergui I, Jamoussi K, Mnif M, Mejdoub H, Zmijewski P, Glenn JM, Trabelsi K, Chtourou H. The impact of exercise training intensity on physiological adaptations and insulin resistance in women with abdominal obesity. Healthcare. 2022;10(12):2533; doi: 10.3390/healt hcare10122533.
 
78.
Yang P, Swardfager W, Fernandes D, Laredo S, Tomlinson G, Oh PI, Thomas S. Finding the optimal volume and intensity of resistance training exercise for type 2 diabetes: the FORTE study, a randomized trial. Diabetes Res Clin Pract. 2017; 130:98–107; doi: 10.1016/j.diabres.2017.05.019.
 
79.
Robinson MM, Dasari S, Konopka AR, Johnson ML, Manjunatha S, Esponda RR, Carter RE, Lanza IR, Nair KS. Enhanced protein translation underlies improved metabolic and physical adaptations to different exercise training modes in young and old humans. Cell Metab. 2017;25(3): 581–92; doi: 10.1016/j.cmet.2017.02.009.
 
80.
Agner VFC, Garcia MC, Taffarel AA, Mourao CB, da Silva IP, da Silva SP, Peccin MS, Lombardi I. Effects of concurrent training on muscle strength in older adults with metabolic syndrome: a randomized controlled clinical trial. Arch Gerontol Geriatr. 2018;75:158–64; doi: 10.1016/j.archger. 2017.12.011.
 
81.
Banitalebi E, Faramarzi M, Bagheri L, Kazemi AR. Comparison of performing 12 weeks’ resistance training before, after and/or in between aerobic exercise on the hormonal status of aged women: a randomized controlled trial. Horm Mol Biol Clin Investig. 2018;35(3); doi: 10.1515/hmbci-2018- 0020.
 
82.
Cadore EL, Menger E, Teodoro JL, da Silva LXN, Boeno FP, Umpierre D, Botton CE, Ferrari R, Cunha CS, Izquierdo M, Pinto RS. Functional and physiological adaptations following concurrent training using sets with and without concentric failure in elderly men: a randomized clinical trial. Exp Gerontol. 2018;110:182–90; doi: 10.1016/ j.exger.2018.06.011.
 
83.
Petersen AMW, Pedersen BK. The anti-inflammatory effect of exercise. J App Physiol. 2005;98(4): 1154–62; doi: 10.1152/japplphysiol.00164.2004.
 
84.
Ostman C, Smart NA, Morcos D, Duller A, Ridley W, Jewiss D. The effect of exercise training on clinical outcomes in patients with the metabolic syndrome: a systematic review and meta-analysis. Cardiovasc Diabetol. 2017;16(1):110; doi: 10.11 86/s12933-017-0590-y.
 
eISSN:1899-1955
Journals System - logo
Scroll to top