ORIGINAL PAPER
Contribution of biological maturation and power of upper and lower limbs to crawl swim performance in adolescent athletes
 
More details
Hide details
1
Health Sciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
 
2
Department of Physical Education, Federal University of Rio Grande do Norte, Natal, Brazil
 
3
Department of Biotechnology, Federal University of Paraiba, Paraiba, Brazil
 
4
Health Sciences Center, Department of Physical Education, State University of Ceará, Fortaleza, Brazil
 
 
Submission date: 2021-12-15
 
 
Acceptance date: 2022-07-04
 
 
Publication date: 2022-07-16
 
 
Hum Mov. 2023;24(2):85-93
 
KEYWORDS
TOPICS
ABSTRACT
Purpose:
There is no consensus in literature data about the influence of biological maturation (BM) on swim performance in young athletes. We analysed the relationship of BM, upper-limb power (ULP), and lower-limb power (LLP) with adolescent athletes’ performance in crawl swim.

Methods:
This observational study determined the BM of 16 competitive swimmers (50% males and 50% females; 12.90 ± 0.88 years) by a mathematical model based on bone age and anthropometric measures. ULP and LLP were established by the horizontal launch test and the vertical and countermovement jump tests on a force platform, respectively. Swim performance was evaluated by the average speed in a 100-m crawl sprint.

Results:
BM was related to ULP (males: r = 0.76, p = 0.001; females: r = 0.39, p = 0.02), LLP (males: vertical jump r = 0.80, p = 0.02, countermovement jump r = 0.48, p = 0.02; females: vertical jump r = 0.30, p = 0.04, countermovement jump r = 0.80, p = 0.01), and crawl swim performance (males: r = –0.91, p = 0.001; females: r = –0.72, p = 0.04). BM had a 87% contribution to crawl swim performance in males and a 66% contribution in females. ULP and LLP showed < 50% contribution to crawl swim performance in both females and males.

Conclusions:
BM was associated with crawl swim performance of adolescent athletes of both sexes. BM exhibited a stronger contribution to crawl swim performance than ULP and LLP in adolescent swimmers at the puberty window.
REFERENCES (38)
1.
Schulkin J. Throwing, swimming, and rowing. In: Schulkin J, Sport: a biological, philosophical, and cultural perspective. New York: Columbia University Press; 2017;115–136.
 
2.
McGibbon KE, Pyne DB, Shephard ME, Thompson KG. Pacing in swimming: a systematic review. Sports Med. 2018;48(7):1621–1633; doi: 10.1007/s40279-018-0901-9.
 
3.
Müller UK. Swimming and muscle. In: Finn RN, Kapoor BG (eds.), Fish larval physiology. Boca Raton: CRC Press; 2020; 523–549.
 
4.
Nikšić E, Beganović E, Joksimović M, Nasrolahi S, Đoković I. The impact of strength and coordination on the success of performance of the freestyle swimming. Eur J Phys Educ Sport Sci. 2019;5(11):10–21; doi: 10.5281/zenodo.3364090.
 
5.
Faigenbaum AD, French DN, Lloyd RS, Kraemer WJ. Strength and power training for young athletes. In: Lloyd RS, Oliver JL (eds.), Strength and conditioning for young athletes: science and application. New York: Routledge; 2019; 131–154.
 
6.
Suchomel TJ, Nimphius S, Bellon CR, Stone MH. The importance of muscular strength: training considerations. Sports Med. 2018;48(4):765–785; doi: 10.1007/s40279-018-0862-z.
 
7.
Do Nascimento Sena Oliveira M, da Rocha Queiroz D, da Costa MSF, da Silva AHO, da Silva JF, de Valois Correia Junior MA, et al. Body segments and biological maturation to estimate the propulsive force of the arm in young swimmers. Rev Bras Cineantropom Desempenho Hum. 2020;22:e74881; doi: 10.1590/1980-0037.2020v22e74881.
 
8.
Phuong VD, Van Bien N, Kraus SF, Holten K. Individual concepts in physics and mathematics education. In: Kraus SF, Krause E (eds.), Comparison of mathematics and physics education I. Wiesbaden: Springer Spektrum; 2020; 215–256.
 
9.
Van der Kruk E, van der Helm FCT, Veeger HEJ, Schwab AL. Power in sports: a literature review on the application, assumptions, and terminology of mechanical power in sport research. J Biomech. 2018;79:1–14; doi: 10.1016/j.jbiomech.2018.08.031.
 
10.
Lobato CH, de Almeida-Neto PF, de Macêdo Cesário T, Barboza Neto R, de Paiva PHM, da Silva Cunha de Medeiros RC, et al. Analysis of the relationship between the birth quartile and the maturation stage of young athletes [in Portuguese]. Res Soc Dev. 2021;10(4):e12710413740; doi: 10.33448/rsd-v10i4.13740.
 
11.
Scheffler C, Hermanussen M. Growth in childhood and adolescence. The International Encyclopedia of Biological Anthropology. 2018;1–11; doi: 10.1002/9781118584538.ieba0537.
 
12.
De Almeida-Neto PF, Bulhões-Correia A, de Matos DG, de Alcântara Varela PW, Pinto VCM, Dantas PMS, et al. Relationship of biological maturation with muscle power in young female athletes. Int J Exerc Sci. 2021;14(6):696–706.
 
13.
Baxter-Jones ADG. Physical growth and development in young athletes: factors of influence and consequence. Kinesiol Rev. 2019;8(3):211–219; doi: 10.1123/kr.2019-0024.
 
14.
De Almeida-Neto PF, de Matos DG, Pinto VCM, Dantas PMS, de Macêdo Cesário T, da Silva LF, et al. Can the neuromuscular performance of young athletes be influenced by hormone levels and different stages of puberty? Int J Environ Res Public Health. 2020;17(16):5637; doi: 10.3390/ijerph17165637.
 
15.
De Almeida-Neto PF, de Matos DG, Baxter-Jones ADG, Batista GR, Pinto VCM, Dantas M, et al. The effectiveness of biological maturation and lean mass in relations to muscle strength performance in elite young athletes. Sustainability. 2020;12(17):6696; doi: 10.3390/su12176696.
 
16.
Pinto VCM, dos Santos PGMD, Dantas MP, de Freitas Araújo JP, de Araújo Tinoco Cabral S, de Araújo Tinoco Cabral BG. Relationship between skeletal age, hormonal markers and physical capacity in adolescents. J Hum Growth Dev. 2017;27(1):77–83; doi: 10.7322/jhgd.127658.
 
17.
Abbott S, Yamauchi G, Halaki M, Castiglioni MT, Salter J, Cobley S. Longitudinal relationships between maturation, technical efficiency, and performance in age-group swimmers: improving swimmer evaluation. Int J Sports Physiol Perform. 2021;16(8):1082–1088; doi: 10.1123/ijspp.2020-0377.
 
18.
Dos Santos MAM, Henrique RS, Salvina M, Silva AHO, de V C Junior MA, Queiroz DR, et al. The influence of anthropometric variables, body composition, propulsive force and maturation on 50m freestyle swimming performance in junior swimmers: an allometric approach. J Sports Sci. 2021;39(14):1615–1620; doi: 10.1080/02640414.2021.1891685.
 
19.
Oliveira M, Henrique RS, Queiroz DR, Salvina M, Melo WV, Moura dos Santos MA. Anthropometric variables, propulsive force and biological maturation: a mediation analysis in young swimmers. Eur J Sport Sci. 2021;21(4):507–514; doi: 10.1080/17461391.2020.1754468.
 
20.
McKay AKA, Stellingwerff T, Smith ES, Martin DT, Mujika I, Goosey-Tolfrey VL, et al. Defining training and performance caliber: a participant classification framework. Int J Sports Physiol Perform. 2022;17(2):317–331; doi: 10.1123/ijspp.2021-0451.
 
21.
Von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP, et al. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Int J Surg. 2014;12(12):1495–1499; doi: 10.1016/j.ijsu.2014.07.013.
 
22.
Da Silva VS, Vieira MFS. International Society for the Advancement of Kinanthropometry (ISAK) Global: international accreditation scheme of the competent anthropometrist. Rev Bras Cineantropom Desempenho Hum. 2020;22:e70517; doi: 10.1590/1980-0037.2020v22e70517.
 
23.
Khadilkar A, Chiplonkar S, Sanwalka N, Khadilkar V, Mandlik R, Ekbote V. A cross-calibration study of GE Lunar iDXA and GE Lunar DPX Pro for body composition measurements in children and adults. J Clin Densitom. 2020;23(1):128–137; doi: 10.1016/j.jocd.2019.03.003.
 
24.
De Macêdo Cesário T, de Almeida-Neto PF, de Matos DG, Wells J, Aidar FJ, de Araújo Tinôco Cabral BG. Evaluation of the body adiposity index against dual-energy X-ray absorptiometry for assessing body composition in children and adolescents. Am J Hum Biol. 2021;33(3):e23503; doi: 10.1002/ajhb.23503.
 
25.
Malina RM, Bouchard C. Physical activity of the young athlete: from growth to maturation [in Portuguese]. São Paulo: Rocas; 2002.
 
26.
De Araujo Tinoco Cabral S, de Araujo Tinoco Cabral BG, Pinto VCM, de Andrade RD, de Oliveira Borges MV, Dantas PMS. Relationship of age with bone and fitness anthropometry practitioners in youth volleyball [in Portuguese]. Rev Bras Ciênc Esporte. 2016;38(1):69–75; doi: 10.1016/j.rbce.2015.12.003.
 
27.
Mello JB, Nagorny GAK, de Castro Haiachi M, Gaya AR, Gaya ACA. Projeto Esporte Brasil: physical fitness profile related to sport performance of children and adolescents. Rev Bras Cineantropom Desempenho Hum. 2016;18(6):658–666; doi: 10.5007/1980-0037.2016v18n6p658.
 
28.
Crowell B. Newtonian physics. Fullerton: Light and Matter; 2001.
 
29.
Forza J, Edmundson CJ. Comparison between Gyko inertial sensor and Chronojump contact mat for the assessment of squat jump, countermovement jump and Abalakov jump in amateur male volleyball players, amateur male rugby players and in high school students. J Multidiscip Eng Sci Technol. 2019;6(4):9982–9988.
 
30.
Williams N. The Borg rating of perceived exertion (RPE) scale. Occup Med. 2017;67(5):404–405; doi: 10.1093/occmed/kqx063.
 
31.
Sounis E. Biostatistics: fundamental principles, statistical methodology. Application to biological sciences [in Portuguese]. São Paulo: McGraw-Hill do Brasil; 1971.
 
32.
Cohen J. A power primer. Psychol Bull. 1992;112(1):155–159; doi: 10.1037/0033-2909.112.1.15.
 
33.
Perini TA, de Oliveira GL, dos Santos Ornellas J, de Oliveira FP. Technical error of measurement in anthropometry [in Portuguese]. Rev Bras Med Esporte. 2005;11(1):81–85; doi: 10.1590/S1517-86922005000100009.
 
34.
Strzała M, Stanula A, Krężałek P, Ostrowski A, Kaca M, Głąb G. Influence of morphology and strength on front crawl swimming speed in junior and youth age-group swimmers. J Strength Cond Res. 2019;33(10):2836–2845; doi: 10.1519/JSC.0000000000002084.
 
35.
Morais JE, Silva AJ, Marinho DA, Lopes VP, Barbosa TM. Determinant factors of long-term performance development in young swimmers. Int J Sports Physiol Perform. 2017;12(2):198–205; doi: 10.1123/ijspp.2015-0420.
 
36.
Morais JE, Silva AJ, Garrido ND, Marinho DA, Barbosa TM. The transfer of strength and power into the stroke biomechanics of young swimmers over a 34-week period. Eur J Sport Sci. 2018;18(6):787–795; doi: 10.1080/17461391.2018.1453869.
 
37.
Kováčová N, Broďáni J. Swimming performance to 25 meters backstroke depends on selected factors of explosive strength of lower limbs. Acta Fac Educ Phys Univ Comen. 2019;59(2):203–213; doi: 10.2478/afepuc-2019-0018.
 
38.
Gourgoulis V, Boli A, Aggeloussis N, Toubekis A, Antoniou P, Kasimatis P, et al. The effect of leg kick on sprint front crawl swimming. J Sports Sci. 2014;32(3):278–289; doi: 10.1080/02640414.2013.823224.
 
eISSN:1899-1955
Journals System - logo
Scroll to top