ORIGINAL PAPER
The influence of a visual target point on the onset of visual regulation and kinematics on the approach run while performing the Tsukahara vault in artistic gymnastics
 
More details
Hide details
1
National and Kapodistrian University of Athens, Athens, Greece
 
 
Submission date: 2024-06-30
 
 
Acceptance date: 2025-02-28
 
 
Online publication date: 2025-06-25
 
 
Corresponding author
George Dallas   

National and Kapodistrian University of Athens, 41, Ethnikis Antistaseos Dafni, 17237
 
 
Hum Mov. 2025;26(2):26-32
 
KEYWORDS
TOPICS
ABSTRACT
Purpose:
The study examined if a visual target for the hurdle take-off affects the onset of visual regulation and hurdle kinematics during the approach run in a vaulting event.

Methods:
Ten high-level male artistic gymnasts (23.9 ± 4.2 years; body mass = 63.7 ± 6.4 kg; body height = 168.00 ± 0.11 cm) performed the Tsukahara vault using a visual target marking the last touchdown of the approach run and the commencement of the hurdle (tape condition) and under standard vaulting regulations (non-tape condition). Gymnast’s trials were performed under training conditions, with five high-speed cameras (four stationary and one panning) used for the collection of the spatiotemporal characteristics of the approach run and hurdle.

Results:
Although a faster onset of visual regulation was revealed in the tape condition, no statistically significant differences were found between the two conditions in the kinematic characteristics of athletes’ run-ups. Furthermore, the profile of the average standard deviation for the contact positions of gymnasts’ feet/soles differed in the two examined conditions.

Conclusions:
The presence of a visual target positively affected the onset of visual regulation when high-level artistic gymnasts performed the Tsukahara vault.
REFERENCES (35)
1.
Dillman CJ, Cheetham PJ, Smith S. A kinematic analysis of men’s Olympic long horse vaulting. J Appl Biomech. 1985;1(2):96–110; doi: 10.1123/ ijsb.1.2.96.
 
2.
Weyand, PG, Sternlight DB , Bellizzi MJ, Wright S. Faster top running speeds are achieved with greater ground forces not more rapid leg movements. J Appl Physiol. 2000;89(5):1991–9; doi: 10.1152/ jappl.2000.89.5.1991.
 
3.
Takei Y. Techniques used by elite women gymnasts performing the handspring vault at the 1987 Pan American games. Int J Sport Biomech. 1990;6(1): 29–55; doi: 10.1123/ijsb.6.1.29.
 
4.
Sands WA, McNeal JR. The relationship of vault run speeds and flight duration to score. Technique. 1995;15:8–10.
 
5.
Bradshaw E. Gymnastics. Sports Biomech. 2004; 3(1):125–44; doi: 10.1080/14763140408522834.
 
6.
Dallas G, Theodorou A. The influence of a hurdle target point on the kinematics of the handspring vault approach run during training. Sports Biomech. 2020;19(4):467–82; doi: 10.1080/1476314 1.2018.1497196.
 
7.
Heinen T, Vinken PM, Jeraj D, Velentzas K. Movement regulation of handsprings on vault. Res Q Exerc Sport. 2013;84(1):68–78; doi: 10.1080/02 701367.2013.762300.
 
8.
Williams AM, Davids K, Williams JG. Visual Perception and Action in Sport. New York: Taylor and Francis; 1999, pp. 198–199.
 
9.
Bradshaw EJ, Sparrow WA. Effects of approach velocity and foot-target characteristics on the visual regulation of step length. Hum Mov Sci. 2001; 20(4–5):401–26; doi: 10.1016/s0167-9457(01)00 060-4.
 
10.
Gibson EJ, Pick AD. An Ecological Approach to Perceptual Learning and Development. New York: Oxford University Press; 2000.
 
11.
De Rugy A, Montagne G, Beukers MJ, Laurent M. The control of human locomotor pointing under restricted informational conditions. Neurosci Lett. 2000;281(2–3):87–90; doi: 10.1016/s0304-3940 (00)00827-2.
 
12.
Montagne G, Cornus S, Glize D, Quaine F, Laurent M. A perception – action coupling type of control in long jump. J Motor Behav. 2000;37–43.
 
13.
Berg WP, Greer NL. A kinematic profile of the approach run of novice long jumpers. J Appl Biomech. 1995;11(2):142–62; doi: 10.1123/jab.11.2.142.
 
14.
Bradshow E, Aisbett B. Visual guidance during competition performance and run-through training in long jumping. Sports Biomech. 2006;5(1): 1–14; doi: 10.1080/14763141.2006.9628221.
 
15.
Hay JG. Approach strategies in the long jump. Int J Sport Biomech. 1988;4(2):114–29; doi: 10.11 23/ijsb.4.2.114.
 
16.
Hay JG, Koh TJ. Evaluating the approach in the horizontal jumps. Int J Sport Biomech. 1988;4(4): 372–92; doi: 10.1123/ijsb.4.4.372.
 
17.
Scott MA, Li F, Davids K. Expertise and the regulation of gait in the approach phase of the long jump. J Sports Sci. 1997;15(6):597–605; doi: 10.10 80/026404197367038.
 
18.
Heinen T, Artmann I, Brinker A, Nicolaus M. Task dependency of movement regulation in female gymnastics vaulting. Balt J Health Phys Act. 2015; 7(4):61–72; doi: 10.29359/BJHPA.07.4.06.
 
19.
Renshaw I, Davids K. A comparison of locomotor pointing strategies in cricket bowling and long jumping. Int J Sport Psychol. 2006;37:1–20.
 
20.
Prassas S, Kwon YH, Sands WA. Biomechanical research in artistic gymnastics: a review. Sports Biomech. 2006;5(2):261–91; doi: 10.1080/14763 140608522878.
 
21.
Takei Y, Blucker EP, Dunn JH, Myers SA, Fortney VL. A three-dimensional analysis of the men’s compulsory vault performed at the 1992 Olympic Games. J Appl Biomech. 1996;12(2):237–57; doi: 10.1123/jab.12.2.237.
 
22.
Theodorou A, Skordilis E, Plainis S, Panoutsakopoylos V, Panteli F. Influence of visual impairment level on the regulatory mechanism used during the approach phase of a long jump. Percept Mot Skills. 2013;117(1):31–45; doi: 10.2466/30. 24.pms.117x11z6.
 
23.
Dainis A. A model for gymnastics vaulting. Med Sci Sports Exe. 1981;13:34–43.
 
24.
Meeuwsen H, Magill R. The role of vision in gait control during gymnastics vaulting. In: Hoshizaki TB , Salmela JH, Petiot B. (eds.). Diagnostics. Treatment and Analysis of Gymnastics talent. Montreal: Sport Psyche Editions; 1987, pp. 137–55.
 
25.
Bohne M, Mecham C, Mitchell K, Abendroth- Smith J. A biomechanical analysis of the Yurchenko layout vault. Res Quart Exe Sport. 2000;71(1).
 
26.
Berg WP, Wade MG, Greer NL. (1994). Visual regulation of gait in bipedal locomotion: revisiting Lee, Lishman, and Thomson (1982). J Exp Psychol Hum Percept Perform. 1994;20(4):854–63; doi: 10.1037/0096-1523.20.4.854.
 
27.
Lee DN, Lishman JR, Thomson JA. Regulation of gait in long jumping. J Exp Psychol Hum Percept Perform. 1982;8(3):448–59; doi: 10.1037/0096- 1523.8.3.448.
 
28.
Hay JG. The Biomechanics of Sports Techniques. 2nd ed. Englewood Cliffs: Prentice-Hall; 1978, pp. 297–9.
 
29.
Fujihara T, Yamamoto E, Fuchimoto T. Run-up velocity in the gymnastics vault and its measurement. Jap J Phys Educ Health Sport Sci. 2017;62(2): 435–53; doi: 10.5432/jjpehss.16103.
 
30.
Veličković S, Petković D, Petković E. A case study about differences in characteristics of the run-up approach on the vault between top-class and middle- class gymnasts. Sci Gym J. 2011;3(1):25–34; doi: 10.52165/sgj.3.1.25-34.
 
31.
Heinen T, Brinker A, Mack M, Hennig L. The role of positional environmental cues in movement regulation of Yurchenko vaults in gymnastics. Sci Gym J. 2017;9(2):113–26.
 
32.
Fédération International Gymnastic. Code de Points. Switzerland: Raeber; 2022.
 
33.
Berg WP, Mark LS. Information for step length adjustment in running. Hum Mov Sci. 2005;24(4): 496–531; doi: 10.1016/j.humov.2005.07.002.
 
34.
Barrero J, Casanova F, Peixoto C, Fawver B, Williams AM. How task constrains influence the gaze and motor behaviors of elite-level gymnasts. Int J Environ Res Public Health. 2021;18(13):6941; doi: 10.3390/ijerph18136941.
 
35.
Heinen T, Jeraj D, Thoeren M, Vinken PM. Targetdirected running in gymnastics: The role of the springboard position as an informational source to regulate handsprings on vault. Biol Sport. 2011; 28(4):215–21.
 
eISSN:1899-1955
Journals System - logo
Scroll to top