ORIGINAL PAPER
Imposing demands on precision influences the hands differently during alternated discrete touching
 
More details
Hide details
1
Motor Neuroscience Research Group, State University of Londrina, Londrina, Brazil
 
 
Submission date: 2020-03-24
 
 
Acceptance date: 2021-01-10
 
 
Publication date: 2021-10-26
 
 
Hum Mov. 2022;23(2):38-45
 
KEYWORDS
TOPICS
ABSTRACT
Purpose:
How demands of precision influence the performance during alternated discrete touching is not well established in the literature. Hence, we compared both hands performance during alternated touching, manipulating the precision demand.

Methods:
Overall, 23 right-handed adults participated in this study. The first task consisted of alternated touching with a pencil on both sides of a blank paper, performing as fast as possible, considering the first touch as reference for the next ones. Subsequently, touch dispersion and width were measured, and circular targets were drawn with those proportions. The second task consisted of performing as many hits as possible inside those targets. Apart from the delimitated target, increasing precision demand, the task parameters were equal.

Results:
Movement time increased and the number of touches decreased from the first to the second task. However, the preferred hand displayed greater reductions in performance.

Conclusions:
The perceptual constraint of adding a visual target affects motor control parameters in alternated touching, causing decrements in performance in both hands, but more evidently in the preferred right hand.
REFERENCES (30)
1.
Elliott D, Helsen WF, Chua R. A century later: Woodworth’s (1899) two-component model of goal-directed aiming. Psychol Bull. 2001;127(3):342–357; doi: 10.1037/0033-2909.127.3.342.
 
2.
Woodworth RS. Accuracy of voluntary movement. Psychol Rev Monogr Suppl. 1899;3(3):1–114; doi: 10.1037/h0092992.
 
3.
Fitts PM. The information capacity of the human motor system in controlling the amplitude of movement. J Exp Psychol. 1954;47(6):381–391; doi: 10.1037/h0055392.
 
4.
Okazaki VHA, Okazaki FHA, Lima ES, Caminha LQ, Teixeira LA. Optimized sub-movements stochastic model in movements with spatial restriction simulated in a computer [in Portuguese]. Rev Bras Biomec. 2008;9(16):18–26.
 
5.
Okazaki VA, Lamas L, Okazaki FA, Rodacki AL. The effect of distance increase on basketball shot performer by children [in Portuguese]. Motricidade. 2013;9(2): 61–72; doi: 10.6063/motricidade.9(2).2668.
 
6.
Kornmeier J, Bach M. Ambiguous figures – what happens in the brain when perception changes but not the stimulus. Front Hum Neurosci. 2012;6:51; doi: 10.3389/fnhum.2012.00051.
 
7.
Knox PC, Bruno N. When does action resist visual illusion? The effect of Müller-Lyer stimuli on reflexive and voluntary saccades. Exp Brain Res. 2007;181(2):277–287; doi: 10.1007/s00221-007-0927-y.
 
8.
Knol H, Huys R, Sarrazin J-C, Spiegler A, Jirsa VK. Ebbinghaus figures that deceive the eye do not necessarily deceive the hand. Sci Rep. 2017;7:3111; doi: 10.1038/s41598-017-02925-4.
 
9.
Skewes JC, Roepstorff A, Frith CD. How do illusions constrain goal-directed movement: perceptual and visuomotor influences on speed/accuracy trade-off. Exp Brain Res. 2011;209(2):247–255; doi: 10.1007/s00221-011-2542-1.
 
10.
Adam JJ, Mol R, Pratt J, Fischer MH. Moving farther but faster: an exception to Fitts’s law. Psychol Sci. 2006;17(9):794–798; doi: 10.1111/j.1467-9280.2006.01784.x.
 
11.
Warren WH. The dynamics of perception and action. Psychol Rev. 2006;113(2):358–389; doi: 10.1037/0033-295X.113.2.358.
 
12.
Gibson JJ. The senses considered as perceptual systems. Boston: Houghton Mifflin; 1966.
 
13.
Kelso JAS, Schöner G. Self-organization of coordinative movement patterns. Hum Mov Sci. 1988;7(1):27–46; doi: 10.1016/0167-9457(88)90003-6.
 
14.
Carlton LG. The effects of temporal-precision and timeminimization constraints on the spatial and temporal accuracy of aimed hand movements. J Mot Behav. 1994;26(1):43–50; doi: 10.1080/00222895.1994.9941660.
 
15.
Marcori AJ, Okazaki VHA. A historical, systematic review of handedness origins. Laterality. 2020;25(1):87–108; doi: 10.1080/1357650X.2019.1614597.
 
16.
Vaughan J, Barany DA, Rios T. The cost of moving with the left hand. Exp Brain Res. 2012;220(1):11–22; doi: 10.1007/s00221-012-3110-z.
 
17.
Bagesteiro LB, Sainburg RL. Nondominant arm advantages in load compensation during rapid elbow joint movements. J Neurophysiol. 2003;90(3):1503–1513; doi: 10.1152/jn.00189.2003.
 
18.
Sainburg RL. Convergent models of handedness and brain lateralization. Front Psychol. 2014;5:1092; doi: 10.3389/fpsyg.2014.01092.
 
19.
Sainburg RL. Handedness: differential specializations for control of trajectory and position. Exerc Sport Sci Rev. 2005;33(4):206–213; doi: 10.1097/00003677-200510000-00010.
 
20.
Faul F, Erdfelder E, Lang A-G, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39(2):175–191; doi: 10.3758/bf03193146.
 
21.
Marcori AJ, Grosso N dos S, Porto AB, Okazaki VHA. Beyond handedness: assessing younger adults and older people lateral preference in six laterality dimensions. Laterality. 2019;24(2):163–175; doi: 10.1080/1357650X.2018.1495725.
 
22.
Rosenthal R. Parametric measures of effect size. In: Cooper H, Hedges LV (eds.), The handbook of research synthesis. New York: Russell Sage Foundation; 1994;231–244.
 
23.
Cohen J. Statistical power analysis for the behavioral sciences. New York: Lawrence Erlbaum Associates; 1988.
 
24.
Meyer DE, Abrams RA, Kornblum S, Wright CE, Smith JE. Optimality in human motor performance: ideal control of rapid aimed movements. Psychol Rev. 1988;95(3):340–370; doi: 10.1037/0033-295x.95.3.340.
 
25.
Zelaznik HN. Necessary and sufficient conditions for the production of linear speed-accuracy trade-offs in aimed hand movements. In: Newell KM, Corcos D (eds.), Variability and motor control. Champaign: Human Kinetics; 1993; 91–116.
 
26.
Fitts PM, Peterson JR. Information capacity of discrete motor responses. J Exp Psychol. 1964;67(2):103–112; doi: 10.1037/h0045689.
 
27.
Schmidt RA, Zelaznik H, Hawkins B, Frank JS, Quinn JT Jr. Motor-output variability: a theory for the accuracy of rapid motor acts. Psychol Rev. 1979;86(5): 415–451; doi: 10.1037/0033-295X.86.5.415.
 
28.
Ferro Pereira C, Marques I, Alves Okazaki VH. Practice effects on fast and accurate spatially constrained movements. Hum Mov. 2014;15(1):4–11; doi: 10.2478/humo-2013-0046.
 
29.
Zelaznik HN, Shapiro DC , McColsky D. Effects of a secondary task on the accuracy of single aiming movements. J Exp Psychol Hum Percept Perform. 1981;7(5):1007–1018; doi: 10.1037//0096-1523.7.5.1007.
 
30.
Todor JI, Doane T. Handedness and hemispheric asymmetry in the control of movements. J Mot Behav. 1978;10(4):295–300; doi: 10.1080/00222895.1978.10735163.
 
eISSN:1899-1955
Journals System - logo
Scroll to top