ORIGINAL PAPER
Evaluating fall risk in community-dwelling older adults through balance assessment with the Nintendo Wii Balance Board
 
More details
Hide details
1
Department of Physical Therapy, School of Allied Health Sciences, University of Phayao, Phayao, Thailand
 
 
Submission date: 2024-09-19
 
 
Acceptance date: 2025-01-14
 
 
Publication date: 2025-03-31
 
 
Corresponding author
Weerasak Tapanya   

Department of Physical Therapy, School of Allied Health Sciences, University of Phayao, 19/2 Maeka Subdistrict, Muang District, Phayao 56000, Thailand
 
 
Hum Mov. 2025;26(1):161-171
 
KEYWORDS
TOPICS
ABSTRACT
Purpose:
Falls among older adults, affecting one-third of those aged 65 and above, pose a critical global health concern. This study focuses on using the Nintendo Wii Balance Board (NWBB) to measure the centre of pressure (CoP) sway length, aiming to identify and validate fall risk in older individuals.

Methods:
Utilising a cross-sectional study design, sixty older adult females aged 65 and above (mean age: 71.03 ± 5.58 years) were classified into fall and non-fall groups based on whether they had experienced one or more fall events in the last six months. Comprehensive CoP sway measurements were conducted on the NWBB using various conditions.

Results:
Results indicated significant differences in CoP sway variables, particularly in conditions with eyes open/closed on a soft surface (EO/SS and EC/SS) in both anteroposterior (AP) and mediolateral (ML) directions (p < 0.001). A strong positive correlation was found between the time to complete five-time sit-to-stand (Tsit to stand) tests and CoP sway length in EC/ SS conditions for AP (r = 0.761, p < 0.001) and ML directions (r = 0.729, p < 0.001). The study identified an optimal cut-off score for AP sway in EC/SS (> 3.89 cm) with 90.0% sensitivity and 80.0% specificity using receiver operating characteristic (ROC) analysis.

Conclusions:
The NWBB effectively detects variations in CoP sway during quiet standing on a soft surface, proving valuable for identifying older adults at risk of falling. This research enhances fall risk assessment insights, emphasising the NWBB’s practicality as a tool for pinpointing older individuals susceptible to falls.
REFERENCES (46)
1.
Moreland B, Kakara R, Henry A. Trends in nonfatal falls and fall-related injuries among adults aged ≥ 65 years – United States, 2012–2018. MMWR Morb Mortal Wkly Rep. 2020;69(27): 875–81; doi: 10.15585/mmwr.mm6927a5.
 
2.
Najafi-Ghezeljeh T, Ghasemifard F, Jafari-Oori M. The effects of a multicomponent fall prevention intervention on fall prevalence, depression, and balance among nursing home residents. Nurs Midwifery Stud. 2019;8(2):78–84; doi: 10.4103/ nms.nms_88_17.
 
3.
Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res. 2007;22(3):465–75; doi: 10.1359/jbmr.061113.
 
4.
Nashner LM, McCollum G. The organization of human postural movements: a formal basis and experimental synthesis. Behav Brain Sci. 1985; 8(1):135–50; doi: 10.1017/S0140525X00020008.
 
5.
Hauer K, Rost B, Rütschle K, Opitz H, Specht N, Bärtsch P, Oster P, Schlierf G. Exercise training for rehabilitation and secondary prevention of falls in geriatric patients with a history of injurious falls. J Am Geriatr Soc. 2001;49(1):10–20; doi: 10.1046/j.1532-5415.2001.49004.x.
 
6.
Ganz DA, Bao Y, Shekelle PG, Rubenstein LZ. Will my patient fall?. JAMA. 2007;297(1):77–86; doi: 10.1001/jama.297.1.77.
 
7.
Chang C-J, Chang Y-S, Yang S-W. Using single leg standing time to predict the fall risk in elderly. Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013: 7456–8; doi: 10.1109/EMBC .2013.6611282.
 
8.
Reider N, Gaul C. Fall risk screening in the elderly: a comparison of the minimal chair height standing ability test and 5-repetition sit-to-stand test. Arch Gerontol Geriatr. 2016;65:133–9; doi: 10.10 16/j.archger.2016.03.004..
 
9.
Neuls PD, Clark TL, Van Heuklon NC, Proctor JE, Kilker BJ, Bieber ME, Donlan AV, Carr-Jules SA, Neidel WH, Newton RA. Usefulness of the Berg Balance Scale to predict falls in the elderly. J Geriatr Phys Ther. 2011;34(1):3–10; doi: 10.1097/ JPT.0b013e3181ff2b0e.
 
10.
Girardi M, Konrad HR, Amin M, Hughes LF. Predicting fall risks in an elderly population: computer dynamic posturography versus electronystagmography test results. Laryngoscope. 2001;111 (9):1528–32; doi: 10.1097/00005537-2001090 00-00008.
 
11.
Chaudhuri S, Thompson H, Demiris G. Fall detection devices and their use with older adults: a systematic review. J Geriatr Phys Ther. 2014; 37(4):178–96; doi: 10.1519/JPT.0b013e3182abe779.
 
12.
Muñoz-Bermejo L, Adsuar JC, Mendoza-Muñoz M, Barrios-Fernández S, Garcia-Gordillo MA, Pérez- Gómez J, Carlos-Vivas J. Test-Retest Reliabilityof Five Times Sit to Stand Test (FTSST) in adults: a systematic review and meta-analysis. Biology. 2021;10(6):510; doi: 10.3390/biology10060510.
 
13.
Goldberg A, Chavis M, Watkins J, Wilson T. The five-times-sit-to-stand test: validity, reliability and detectable change in older females. Aging Clin Exp Res. 2012;24(4):339–44; doi: 10.1007/BF03325265.
 
14.
Whitney SL, Wrisley DM, Marchetti GF, Gee MA, Redfern MS, Furman JM. Clinical measurement of sit-to-stand performance in people with balance disorders: validity of data for the Five-Times-Sitto- Stand Test. Phys Ther. 2005;85(10):1034–45.
 
15.
Bohannon RW. Test-retest reliability of the fiverepetition sit-to-stand test: a systematic review of the literature involving adults. J Strength Cond Res. 2011;25(11):3205–7; doi: 10.1519/JSC.0b0 13e318234e59f.
 
16.
Suzuki Y, Kamide N, Kitai Y, Ando M, Sato H, Yoshitaka S, Sakamoto M. Absolute reliability of measurements of muscle strength and physical performance measures in older people with high functional capacities. Eur Geriatr Med. 2019;10(5): 733–40; doi: 10.1007/s41999-019-00218-9.
 
17.
Tiwari D, Talley SA, Alsalaheen B, Goldberg A. Strength of association between the Five-Times- Sit-to-Stand Test and balance, knee extensor strength and lower limb power in communitydwelling older adults. Int J Ther Rehabil. 2019; 26(3):1–10; doi: 10.12968/ijtr.2018.0001.
 
18.
Chang W-D, Chang W-Y, Lee C-L, Feng C-Y. Validity and reliability of Wii Fit balance board for the assessment of balance of healthy young adults and the elderly. J Phys Ther Sci. 2013;25(10): 1251–3; doi: 10.1589/jpts.25.1251.
 
19.
Hernandez-Laredo E, Parra-Rodríguez L, Estévez- Pedraza ÁG, Martínez-Méndez R. A low-cost, iot-connected force platform for fall risk assessment in older adults. In: Cuautle JJAF et al. (eds.). XLVI Mexican Conference on Biomedical Engineering. Proceedings of CNIB 2023, November 2–4, 2023, Villahermosa Tabasco, México, Vol. 1: Signal Processing and Bioinformatics. Cham: Springer Nature Switzerland; 2024, pp. 374–85; doi: 10.1007/978-3-031-46933-6_39.
 
20.
Yamako G, Punchihewa NG, Arakawa H, Tajima T, Chosa E. Evaluation of sit-to-stand movement in older adults with locomotive syndrome using the Nintendo Wii Balance Board. Sensors. 2023; 23(7):3368; doi: 10.3390/s23073368.
 
21.
Melzer I, Benjuya N, Kaplanski J. Postural stability in the elderly: a comparison between fallers and non-fallers. Age Ageing. 2004;33(6):602–7; doi: 10.1093/ageing/afh218.
 
22.
Poncumhak P, Srithawong A, Duangsanjun W, Amput P. Comparison of the ability of static and dynamic balance tests to determine the risk of falls among older community-dwelling individuals. J Func Morphol Kinesiolgy. 2023;8(2):43; doi: 10.3390/jfmk8020043.
 
23.
Takai Y, Ohta M, Akagi R, Kanehisa H, Kawakami Y, Fukunaga T. Sit-to-stand test to evaluate knee extensor muscle size and strength in the elderly: a novel approach. J Physiol Anthropol. 2009;28(3): 123–8; doi: 10.2114/jpa2.28.123.
 
24.
Meade ZS, Marmelat V, Mukherjee M, Sado T, Takahashi KZ. Comparison of a portable balance board for measures of persistence in postural sway. J Biomech. 2020;100:109600; doi: 10.1016/j. jbiomech.2020.109600.
 
25.
Tapanya W, Sangkarit N. Smartphone usage and postural stability in individuals with forward head posture: a Nintendo Wii Balance Board analysis. Ann Rehabil Med. 2024;48(4):289–300; doi: 10.5535/arm.230034.
 
26.
Talis VL, Grishin AA, Solopova IA, Oskanyan TL, Belenky VE, Ivanenko YP. Asymmetric leg loading during sit-to-stand, walking and quiet standing in patients after unilateral total hip replacement surgery. Clin Biomech. 2008;23(4):424–33; doi: 10.1016/j.clinbiomech.2007.11.010.
 
27.
Anson E, Bigelow RT, Studenski S, Deshpande N, Agrawal Y. Failure on the foam eyes closed test of standing balance associated with reduced semicircular canal function in healthy older adults. Ear Hear. 2019;40(2):340–4; doi: 10.1097/AUD. 0000000000000619.
 
28.
Aflalo J, Quijoux F, Truong C, Bertin-Hugault F, Ricard D. Impact of sensory afferences in postural control quantified by force platform: a protocol for systematic review. J Pers Med. 2022;12(8): 1319; doi: 10.3390/jpm12081319.
 
29.
Qiu H, Xiong S. Center-of-pressure based postural sway measures: reliability and ability to distinguish between age, fear of falling and fall history. Int J Indu Ergon. 2015;47:37–44; doi: 10.1016/ j.ergon.2015.02.004.
 
30.
Quijoux F, Nicolaï A, Chairi I, Bargiotas I, Ricard D, Yelnik A, Oudre L, Bertin-Hugault F, Vidal PP, Vayatis N, Buffat S, Audiffren J. A review of center of pressure (COP) variables to quantify standing balance in elderly people: algorithms and openaccess code. Physiol Rep. 2021;9(22):e15067.
 
31.
Quijoux F, Vienne-Jumeau A, Bertin-Hugault F, Zawieja P, Lefevre M, Vidal P-P, Ricard D. Center of pressure displacement characteristics differentiate fall risk in older people: a systematic review with meta-analysis. Ageing Res Rev. 2020; 62:101117; doi: 10.1016/j.arr.2020.101117.
 
32.
Degani AM, Leonard CT, Danna-dos-Santos A. The effects of early stages of aging on postural sway: a multiple domain balance assessment using a force platform. J Biomech. 2017;64:8–15; doi: 10.1016/j.jbiomech.2017.08.029.
 
33.
Alqahtani BA, Ferchak MA, Huppert TJ, Sejdic E, Perera S, Greenspan SL, Sparto PJ. Standing balance and strength measurements in older adults living in residential care communities. Aging Clin Exp Res. 2017;29(5):1021–30; doi: 10.1007/ s40520-016-0693-4.
 
34.
Palve SS, Palve SB. Impact of aging on nerve conduction velocities and late responses in healthy individuals. J Neurosci Rural Pract. 2018;9(1): 112–6; doi: 10.4103/jnrp.jnrp_323_17.
 
35.
Voitenkov VB, Ekusheva EV, Komancev VN, Skripchenko NV, Grigoryev SG, Klimkin AV, Aksenova AI. Age-related changes of sensory peripheral nerve system in healthy subjects [in Russian]. Adv Gerontol. 2017;30(6):802–8.
 
36.
Annor P, Kwak K, Kim H, Kim D. Effect of local somatosensory stimulus on postural sway during sit-to-stand movement in the elderly. BMC Musculoskelet Disord. 2021;22(Suppl 1):731; doi: 10.1186/s12891-021-04609-7.
 
37.
Shafizadegan Z, Baharlouei H, Khoshavi O, Garmabi Z, Fereshtenejad N. Evaluating the short term effects of kinesiology taping and stretching of gastrocnemius on postural control: a randomized clinical trial. J Bodyw Mov Ther. 2020;24(2):196–201; doi: 10.1016/j.jbmt.2019.11.003.
 
38.
Zawadka-Kunikowska M, Klawe JJ, Tafil-Klawe M, Bejtka M, Rzepiński Ł, Cieślicka M. Cognitive function and postural control strategies in relation to disease progression in patients with Parkinson’s disease. Int J Environ Res Public Health. 2022;19(19):12694; doi: 10.3390/ijerph 191912694.
 
39.
de Souza NS, Martins AC, Alexandre DJ, Orsini M, Bastos VH, Leite MA, Teixeira S, Velasques B, Ribeiro P, Bittencourt J, Matta APC, Filho PM. The Influence of fear of falling on orthostatic postural control: a systematic review. Neurol Int. 2015;7(3):6057; doi: 10.4081/ni.2015.6057.
 
40.
Mertes G, Baldewijns G, Dingenen P-J, Croonenborghs T, Vanrumste B. Automatic fall risk estimation using the Nintendo Wii Balance Board. In: Verdier C et al. (eds.). Proceedings of the International Joint Conference on Biomedical Engineering Systems and Technologies. Vol. 5. Lisbon: Scitepress – Science and Technology Publications; 2015, pp. 75–81; doi: 10.5220/0005208700 750081.
 
41.
Bonnechère B, Van Hove O, Jansen B, Van Sint Jan S. Validation of the Wii Balance Board to assess static balance during dual-task activity in healthy subjects. Med Novel Technol Dev. 2019;1: 100003.
 
42.
Sato A, Goh A-C. Concurrent and discriminant validity of Nintendo Wii Fit exergame for the assessment of postural sway. J Phys Ther Sci. 2021; 33(2):100–5; doi: 10.1589/jpts.33.100.
 
43.
Beato MC, Morton E, Iadarola C, Winterberger L, Dawson N. Can the Wii Fit Balance Board be used as a fall risk assessment tool among poststroke patients?. J Stroke Cerebrovasc Dis. 2020;29(2): 104500; doi: 10.1016/j.jstrokecerebrovasdis.2019. 104500.
 
44.
Clark RA, Bryant AL, Pua Y, McCrory P, Bennell K, Hunt M. Validity and reliability of the Nintendo Wii Balance Board for assessment of standing balance. Gait Posture. 2010;31(3):307–10; doi: 10.1016/j.gaitpost.2009.11.012.
 
45.
Scaglioni-Solano P, Aragón-Vargas LF. Validity and reliability of the Nintendo Wii Balance Board to assess standing balance and sensory integration in highly functional older adults. Int J Rehabil Res. 2014;37(2):138–43; doi: 10.1097/MRR .000 0000000000046.
 
46.
Clark RA, Mentiplay BF, Pua Y-H, Bower KJ. Reliability and validity of the Wii Balance Board for assessment of standing balance: a systematic review. Gait Posture. 2018;61:40–54; doi: 10.1016/ j.gaitpost.2017.12.022.
 
eISSN:1899-1955
Journals System - logo
Scroll to top