ORIGINAL PAPER
Criterion validity and accuracy of a heart rate monitor
 
More details
Hide details
1
Department of Physical Education, Federal University of Pernambuco, Recife, Brazil
 
2
Department of Sport, Federal University of Minas Gerais, Belo Horizonte, Brazil
 
 
Submission date: 2020-06-26
 
 
Acceptance date: 2020-10-21
 
 
Publication date: 2021-08-17
 
 
Hum Mov. 2022;23(1):60-68
 
KEYWORDS
TOPICS
ABSTRACT
Purpose:
Heart rate (HR) monitors have recently started to use photoplethysmography, a technique which measures the light reflected by blood vessels and does not require the use of a chest strap. The aim of this study was to test the validity and accuracy of the Garmin® HR monitor, which measures HR at rest and during exercise utilizing the method of photoplethysmography.

Methods:
The sample consisted of 28 males aged 18–32 years. Anthropometric measurements were collected and HR was concomitantly monitored with electrocardiography and with the Garmin® 735XT® device in 2 situations: at rest and during self-selected exercise. Descriptive statistics, linear regression, Bland-Altman plot, mean absolute error (MAE), and mean absolute percentage error (MAPE) were calculated for statistical analysis. Correlations between the HR measurement with electrocardiography and the Garmin® monitor at rest and during exercise were obtained (r = 0.93 and r = 0.96, respectively).

Results:
The difference between Garmin® and electrocardiography HR values showed an error of –1.2 ± 3.3 bpm (rest), while the average error was positive at 0.7 ± 5.1 bpm. MAE and MAPE at rest equalled 2.2 ± 2.8 bpm and 3.3%, respectively. In addition, MAE and MAPE for exercise were 3.5 ± 3.8 bpm and 3.0%, respectively.

Conclusions:
The Garmin Forerunner 735XT can be used at rest, as well as with walking and running activities of light, moderate, and vigorous intensities.

 
REFERENCES (41)
1.
Powers SK, Howley ET. Exercise physiology: theory and application to fitness and performance, 8th ed. New York: McGraw-Hill; 2012.
 
2.
Gibson AL, Wagner DR, Heyward VH. Advanced fitness assessment and exercise prescription, 8th ed. Champaign: Human Kinetics; 2018.
 
3.
Almeida MB, Araújo CGS. Effects of aerobic training on heart rate [in Portuguese]. Rev Bras Med Esporte. 2003;9(2):104–112.
 
4.
Paoli A, Bianco A. What is fitness training? Definitions and implications: a systematic review article. Iran J Public Health. 2015;44(5):602–614.
 
5.
Maheshwari A, Norby FL, Soliman EZ, Adabag S, Whitsel EA, Alonso A, et al. Low heart rate variability in a 2-minute electrocardiogram recording is associated with an increased risk of sudden cardiac death in the general population: the Atherosclerosis Risk in Communities Study. PLoS One. 2016;11(8):e0161648; doi: 10.1371/journal.pone.0161648.
 
6.
Von Rosenberg W, Chanwimalueang T, Adjei T, Jaffer U, Goverdovsky V, Mandic DP. Resolving ambiguities in the LF/HF ratio: LF-HF scatter plots for the categorization of mental and physical stress from HRV. Front Physiol. 2017;8:360; doi: 10.3389/fphys.2017.00360.
 
7.
Georgiou K, Larentzakis AV, Khamis NN, Alsuhaibani GI, Alaska YA, Giallafos EJ. Can wearable devices accurately measure heart rate variability? A systematic review. Folia Med. 2018;60(1):7–20; doi: 10.2478/folmed-2018-0012.
 
8.
Javorka M, Zila I, Balhárek T, Javorka K. Heart rate recovery after exercise: relations to heart rate variability and complexity. Braz J Med Biol Res. 2002;35(8):991–1000; doi: 10.1590/s0100-879x2002000800018.
 
9.
Mellerowicz H, Smodlaka VN. Ergometry: basics of medical exercise testing. Baltimore: Urban & Schwarzenberg; 1981.
 
10.
Harris PRE. The normal electrocardiogram: resting 12-lead and electrocardiogram monitoring in the hospital. Crit Care Nurs Clin North Am. 2016;28(3):281–296; doi: 10.1016/j.cnc.2016.04.002.
 
11.
Pimentel AS, da Silva Alves E, de Oliveira Alvim R, Nunes RT, Amaral Costa CM, Moraes Lovisi JC, et al. Polar S810 as an alternative resource to the use of the electrocardiogram in the 4-second exercise test [in Portuguese]. Arq Bras Cardiol. 2010;94(5):580–584; doi: 10.1590/s0066-782x2010005000037.
 
12.
Engström E, Ottosson E, Wohlfart B, Grundström N, Wisén A. Comparison of heart rate measured by Polar RS400 and ECG, validity and repeatability. Adv Physiother. 2012;14(3):115–122; doi: 10.3109/14038196.2012.694118.
 
13.
Léger L, Thivierge M. Heart rate monitors: validity, stability, and functionality. Phys Sportsmed. 1988;16(5):143–151; doi: 10.1080/00913847.1988.11709511.
 
14.
Gamelin F-X, Baquet G, Berthoin S, Bosquet L. Validity of the Polar S810 to measure R-R intervals in children. Int J Sports Med. 2008;29(2):134–138; doi: 10.1055/s-2007-964995.
 
15.
Giles D, Draper N, Neil W. Validity of the Polar V800 heart rate monitor to measure RR intervals at rest. Eur J Appl Physiol. 2016;116(3):563–571; doi: 10.1007/s00421-015-3303-9.
 
16.
Gilgen-Ammann R, Schweizer T, Wyss T. RR interval signal quality of a heart rate monitor and an ECG Holter at rest and during exercise. Eur J Appl Physiol. 2019;119(7):1525–1532; doi: 10.1007/s00421-019-04142-5.
 
17.
Hernando D, Garatachea N, Almeida R, Casajús JA, Bailón R. Validation of heart rate monitor Polar RS800 for heart rate variability analysis during exercise. J Strength Cond Res. 2018;32(3):716–725; doi: 10.1519/JSC.0000000000001662.
 
18.
Gamelin FX, Berthoin S, Bosquet L. Validity of the Polar S810 heart rate monitor to measure R-R intervals at rest. Med Sci Sports Exerc. 2006;38(5):887–893; doi: 10.1249/01.mss.0000218135.79476.9c.
 
19.
Terbizan DJ, Dolezal BA, Albano C. Validity of seven commercially available heart rate monitors. Meas Phys Educ Exerc Sci. 2002;6(4):243–247; doi: 10.1207/S15327841MPEE0604_3.
 
20.
Pevnick JM, Birkeland K, Zimmer R, Elad Y, Kedan I. Wearable technology for cardiology: an update and framework for the future. Trends Cardiovasc Med. 2018;28(2):144–150; doi: 10.1016/j.tcm.2017.08.003.
 
21.
Allen J. Photoplethysmography and its application in clinical physiological measurement. Physiol Meas. 2007;28(3):R1–R39; doi: 10.1088/0967-3334/28/3/R01.
 
22.
Parpinel M, Scherling L, Lazzer S, Della Mea V. Reliability of heart rate mobile apps in young healthy adults: exploratory study and research directions. J Innov Health Inform. 2017;24(2):224–227; doi: 10.14236/jhi.v24i2.921.
 
23.
Gillinov S, Etiwy M, Wang R, Blackburn G, Phelan D, Gillinov AM, et al. Variable accuracy of wearable heart rate monitors during aerobic exercise. Med Sci Sports Exerc. 2017;49(8):1697–1703; doi: 10.1249/MSS.0000000000001284.
 
24.
Boudreaux BD, Hebert EP, Hollander DB, Williams BM, Cormier CL, Naquin MR, et al. Validity of wearable activity monitors during cycling and resistance exercise. Med Sci Sports Exerc. 2018;50(3):624–633; doi: 10.1249/MSS.0000000000001471.
 
25.
Horton JF, Stergiou P, Fung TS, Katz L. Comparison of Polar M600 optical heart rate and ECG heart rate during exercise. Med Sci Sports Exerc. 2017;49(12):2600–2607; doi: 10.1249/MSS.0000000000001388.
 
26.
Delgado-Gonzalo R, Parak J, Tarniceriu A, Renevey P, Bertschi M, Korhonen I. Evaluation of accuracy and reliability of PulseOn optical heart rate monitoring device. Ann Int Conf IEEE Eng Med Biol Soc. 2015;2015:430–433; doi: 10.1109/EMBC.2015.7318391.
 
27.
Stahl SE, An H-S, Dinkel DM, Noble JM, Lee J-M. How accurate are the wrist-based heart rate monitors during walking and running activities? Are they accurate enough? BMJ Open Sport Exerc Med. 2016;2(1):e000106; doi: 10.1136/bmjsem-2015-000106.
 
28.
Jo E, Lewis K, Directo D, Kim MJ, Dolezal BA. Validation of biofeedback wearables for photoplethysmographic heart rate tracking. J Sports Sci Med. 2016;15(3):540–547.
 
29.
Claes J, Buys R, Avila A, Finlay D, Kennedy A, Guldenring D, et al. Validity of heart rate measurements by the Garmin Forerunner 225 at different walking intensities. J Med Eng Technol. 2017;41(6):480–485; doi: 10.1080/03091902.2017.1333166.
 
30.
Hermand E, Cassirame J, Ennequin G, Hue O. Validation of a photoplethysmographic heart rate monitor: Polar OH1. Int J Sports Med. 2019;40(7):462–467; doi: 10.1055/a-0875-4033.
 
31.
Parak J, Korhonen I. Evaluation of wearable consumer heart rate monitors based on photopletysmography. Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:3670–3673; doi: 10.1109/EMBC.2014.6944419.
 
32.
Spierer DK, Rosen Z, Litman LL, Fujii K. Validation of photoplethysmography as a method to detect heart rate during rest and exercise. J Med Eng Technol. 2015;39(5):264–271; doi: 10.3109/03091902.2015.1047536.
 
33.
Garmin Elevate Optical Heart Rate. Available from: https://ph.garmin.com/minisite....
 
34.
Norton K, Olds T (eds.). Anthropometrica: a textbook of body measurement for sports and health courses. Sydney: UNSW Press; 1996.
 
35.
American College of Sports Medicine. ACSM’s guidelines for exercise testing and prescription, 10th ed. Philadelphia: Wolters Kluwer; 2018.
 
36.
Fox SM 3rd, Naughton JP, Haskell WL. Physical activity and the prevention of coronary heart disease. Ann Clin Res. 1971;3(6):404–432.
 
37.
Fokkema T, Kooiman TJM, Krijnen WP, van der Schans CP, de Groot M. Reliability and validity of ten consumer activity trackers depend on walking speed. Med Sci Sports Exerc. 2017;49(4):793–800; doi: 10.1249/MSS.0000000000001146.
 
38.
Nelson MB, Kaminsky LA, Dickin DC, Montoye AHK. Validity of consumer-based physical activity monitors for specific activity types. Med Sci Sports Exerc. 2016;48(8):1619–1628; doi: 10.1249/MSS.0000000000000933.
 
39.
Lin Z, Zhang J, Chen Y, Zhang Q. Heart rate estimation using wrist-acquired photoplethysmography under different types of daily life motion artifact. 2015 IEEE International Conference on Communications, 8–12 June 2015; doi: 10.1109/ICC.2015.7248369.
 
40.
Vasconcellos FVA, Seabra A, Cunha FA, Montenegro RA, Bouskela E, Farinatti P. Heart rate variability assessment with fingertip photoplethysmography and Polar RS800cx as compared with electrocardiography in obese adolescents. Blood Press Monit. 2015;20(6):351–360; doi: 10.1097/MBP.0000000000000143.
 
41.
Lee J, Matsumura K, Yamakoshi K-I, Rolfe P, Tanaka S, Yamakoshi T. Comparison between red, green and blue light reflection photoplethysmography for heart rate monitoring during motion. Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:1724–1727; doi: 10.1109/EMBC.2013.6609852.
 
eISSN:1899-1955
Journals System - logo
Scroll to top