REVIEW PAPER
Brain-derived neurotrophic factor and stroke: perspectives on exercise as a health care strategy
 
More details
Hide details
1
São Paulo State University (UNESP), Araraquara School of Dentistry, Araraquara, SP, Brazil
 
2
Physiology and Biochemistry Department, Wroclaw University of Health and Sport Sciences, Wrocław, Poland
 
 
Submission date: 2023-08-29
 
 
Acceptance date: 2023-12-15
 
 
Publication date: 2024-02-07
 
 
Corresponding author
Gilmara Gomes De Assis   

São Paulo State University (UNESP), Araraquara School of Dentistry, Araraquara, SP, Brazil.
 
 
Hum Mov. 2024;25(1):1-14
 
KEYWORDS
TOPICS
ABSTRACT
Purpose:
Stroke is the second most common cause of mortality worldwide and the third most common cause of motor disability. From another perspective, brain-derived neurotrophic factor (BDNF) is a metabolite that plays several neuroprotective roles. While cardiometabolic diseases are the leading cause of stroke, BDNF represents a target factor in the prevention and/or recovery from stroke. Aim: In this narrative review, I have summarised the clinical evidence of BDNF participation in the recovery from a stroke and discuss the potential use of exercise as a rehabilitation tool.

Methods:
Multiple combinations of the terms ‘brain infarction’, ‘cerebral infarction’, ‘hemorrhagic stroke’, ‘ischemic stroke’, ‘embolic stroke’ or ‘thrombotic stroke’ AND ‘BDNF’ or ‘pro-BDNF’ were used in PubMed databases. Studies not available in the English language or addressing animal experiments were excluded.

Results and prospects:
Seventeen clinical studies published up to June 30th of 2023 were included in this review. Changes in the patients circulating BDNF levels represent their capability of recovery from the stroke outcomes. A subtle, but consistent, negative influence of the presence of the 66Met-allele in BDNF on motor and cognitive competencies is seen in patients recovering from a stroke throughout the studies – an effect that is not reportedly detectable in other neuropathological conditions. Exercise exerts a positive modulation on BDNF levels that accompanies improvements in stroke recovery and might exert a preventive role against the severity of stroke outcomes.

 
REFERENCES (72)
1.
Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the global burden of disease study 2010. Lancet. 2012;380(9859):2095–2128; doi: 10.1016/S0140-6736(12)61728-0.
 
2.
Bejot Y, Bailly H, Durier J, Giroud M. Epidemiology of stroke in Europe and trends for the 21st century Medicale. 2016;45(12:391–398; doi: 10.1016/j.lpm.2016.10. 003.
 
3.
 
4.
Kuriakose D, Xiao Z. Pathophysiology and treatment of stroke: present status and future perspectives. Int J Mol Sci. 2020;21(20):7609; doi: 10.3390/ijms21207 609.
 
5.
Garcia JH. The neuropathology of stroke. Hum Pathol. 1975;6(5):583–598; doi: 10.1016/S0046-8177(75)800 43-8.
 
6.
Tapuwa D, Musuka M, Wilton S, Traboulsi M, Hill MD. Diagnosis and management of acute ischemic stroke: speed is critical. CMAJ. 2015;187(12):887–893; doi: 10.1503/cmaj.140355.
 
7.
Broughton BRS, Reutens DC, Sobey CG. Apoptotic mechanisms after cerebral ischemia. Stroke. 2009;40(5) :331–339; doi: 10.1161/STRO KEAHA.108.531632.
 
8.
Gauberti M, De Lizarrondo SM, Vivien D. The “inflammatory penumbra” in ischemic stroke: From clinical data to experimental evidence. Eur Stroke J. 2016;1(1): 20–27; doi: 10.1177/2396987316630249.
 
9.
De Assis GG, Gasanov EV, de Sousa MBC, Kozacz A, Murawska-Cialowicz E. Brain derived neurotrophic factor, a link of aerobic metabolism to neuroplasticity. J Physiol Pharmacol, 2018;69(3):351–358; doi: 10.26402/ JPP.2018.3.12.
 
10.
Rafieva LM, Gasanov EV. Neurotrophin propeptides: biological functions and molecular mechanisms. Curr Protein Pept Sci. 2016;17(4):298–305; doi: 10.2174/13 89203716666150623104145.
 
11.
Brigadski T, Lessmann V. The physiology of regulated BDNF release. Cell Tissue Res. 2020;382(1):15–45; doi: 10.1007/s00441-020-03253-2.
 
12.
Hempstead BL. Brain-derived neurotrophic factor: three ligands, many actions. Trans Am Clin Climatol Assoc. 2015;126:9–19.
 
13.
Lee R, Kermani P, Teng KK, Hempstead BL. Regulation of cell survival by secreted proneurotrophins. Science. 2001;294(5548):1945–1948; doi: 10.1126/science. 1065057.
 
14.
Atkinson E, Dickman R. Growth factors and their peptide mimetics for treatment of traumatic brain injury. Bioorg Med Chem. 2023;90:117368; doi: 10.1016/j.bmc. 2023.117368.
 
15.
Dincheva I, Glatt CE, Lee FS. Impact of the BDNF Val- 66Met polymorphism on cognition: Implications for behavioral genetics. Neuroscientist. 2012;18(5):439–451; doi: 10.1177/1073858411431646.
 
16.
Anastasia A, Deinhardt K, Chao MV, Will NE, Irmady K, Lee FS, et al. Val66Met polymorphism of BDNF alters prodomain structure to induce neuronal growth cone retraction. Nat Commun. 2013;4:2490; doi: 10.1038/ ncomms3490.
 
17.
Jiang R, Babyak MA, Brummett BH, Hauser ER, Shah SH, Becker RC et al. Brain-derived neurotrophic factor rs6265 (Val66Met) polymorphism is associated with disease severity and incidence of cardiovascular events in a patient cohort. Am Heart J. 2017;190:40–45; doi: 10.1016/j.ahj.2017.05.002.
 
18.
Boots EA, Schultz SA, Clark LR, Racine AM, Darst BF, Koscik RL, et al. BDNF Val66Met predicts cognitive decline in the Wisconsin Registry for Alzheimer’s Prevention. Neurology. 2017;88(22):2098–106; doi: 10.1212/ WNL.0000000000003980.
 
19.
Pezawas L, Verchinski BA, Mattay VS, Callicott JH, Kolachana BS, Straub RE, et al. The brain-derived neurotrophic factor val66met polymorphism and variation in human cortical morphology. J Neurosci. 2004;24(45): 10099–10102; doi: 10.1523/JNEURO SCI.2680-04.2004.
 
20.
Szeszko PR, Lipsky R, Mentschel C, Robinson D, Gunduz- Bruce H, Sevy S, et al. Brain-derived neurotrophic factor val66met polymorphism and volume of the hippocampal formation. Mol Psychiatry. 2005;10(7):631– 636; doi: 10.1038/sj.mp.4001656.
 
21.
Murawska-Ciałowicz E, de Assis GG, Clemente FM, Feito Y, Stastny P, Zuwała-Jagiełło J, et al. Effect of four different forms of high intensity training on BDNF response to Wingate and Graded Exercise Test. Sci Rep. 2021;11(1):8599; doi: 10.1038/s41598-021-88069-y.
 
22.
Mollet I, Marto JP, Mendonca M, Baptista MV, Vieira HLA. Remote but not distant: a review on experimental models and clinical trials in remote ischemic conditioning as potential therapy in ischemic stroke. Mol Neurobiol. 2022;59(1):294–325; doi: 10.1007/s12035- 021-02585-6.
 
23.
Lee HJ, Kim KS, Kim EJ, Choi HB, Lee KH, Park IH, et al. Brain transplantation of immortalized human neural stem cells promotes functional recovery in mouse intracerebral hemorrhage stroke model. Stem Cells. 2007;25(5):1204–1212; doi: 10.1634/stemcells.2006- 0409.
 
24.
Koh SH, Park HH. Neurogenesis in stroke recovery. Transl Stroke Res. 2017;8(1):3–13; doi: 10.1007/s12975- 016-0460-z.
 
25.
Bartkowska K, Paquin A, Gauthier AS, Kaplan DR, Miller FD. Trk signaling regulates neural precursor cell proliferation and differentiation during cortical development. Development. 2007:134(24):4369–4380; doi: 10.1242/dev.008227.
 
26.
Su B, Ji YS, Sun XL, Liu XH, Chen ZY. Brain-derived neurotrophic factor (BDNF)-induced mitochondrial motility arrest and presynaptic docking contribute to BDNF-enhanced synaptic transmission. J Biol Chem. 2014;289(3):1213–1226; doi: 10.1074/jbc.M113.526129.
 
27.
Zhao H, Alam A, San CY, Eguchi S, Chen Q, Lian Q, et al. Molecular mechanisms of brain-derived neurotrophic factor in neuro-protection: Recent developments. Brain Res. 2017;1665:1–21; doi: 10.1016/j.brainres.2017. 03.029.
 
28.
Sasi M, Vignoli B, Canossa M, Blum R. Neurobiology of local and intercellular BDNF signaling. Pflugers Arch. 2017;469(5–6):593–610; doi: 10.1007/s00424-017- 1964-4.
 
29.
de Assis GG, Gasanov EV. BDNF and cortisol integrative system – plasticity vs. degeneration: implications of the Val66Met polymorphism. Front Neuroendocrinol. 2019;55:100784; doi: 10.1016/j.yfrne.2019.100784.
 
30.
Cattaneo A, Cattane N, Begni V, Pariante, CM, Riva MA. The human BDNF gene: peripheral gene expression and protein levels as biomarkers for psychiatric disorders. Transl Psychiatry. 2016;6(11):e958; doi: 10.1038/TP. 2016.214.
 
31.
de Assis GG, Hoffman JR, Bojakowski J, Murawska- Ciałowicz E, Cięszczyk P, Gasanov EV. The Val66 and Met66 alleles-specific expression of BDNF in human muscle and their metabolic responsivity. Front Mol Neurosci. 2021;14:638176; doi: 10.3389/fnmol.2021.638176.
 
32.
de Assis GG, Hoffman JR. The BDNF Val66Met polymorphism is a relevant, but not determinant, risk factor in the etiology of neuropsychiatric disorders – current advances in human studies: a systematic review. Brain Plast. 2022;8(2):133–142; doi: 10.3233/bpl-210132.
 
33.
Vilkki J, Lappalainen J, Juvela S, Kanarek K, Hernesniemi JA, Siironen J. Relationship of the met allele of the brain-derived neurotrophic factor VAL66MET polymorphism to memory after aneurysmal subarachnoid hemorrhage. Neurosurgery. 2008;63(2):198–203; doi: 10.1227/01.NEU.0000320382.21577.8E.
 
34.
van der Vliet R, Ribbers GM, Vandermeeren Y, Frens MA, Selles RW. BDNF Val66Met but not transcranial direct current stimulation affects motor learning after stroke. Brain Stimul. 2017;10(5):882–892; doi: 10.1016/ j.brs.2017.07.004.
 
35.
Chang WH, Bang OY, Shin Y, Lee A, Pascual-Leone A, Kim YH. BDNF polymorphism and differential rTMS effects on motor recovery of stroke patients. Brain Stimul. 2014;7(4):553–558; doi: 10.1016/j.brs.2014.03.008.
 
36.
Fridriksson J, Elm J, Stark BC, Basilakos A, Rorden C, Sen S, et al. BDNF genotype and tDCS interaction in aphasia treatment. Brain Stimul. 2018;11(6):1276–1281; doi: 10.1016/j.brs.2018.08.009.
 
37.
Essa H, Vasant DH, Raginis-Zborowska A, Payton A, Michou E, Hamdy S. The BDNF polymorphism Val- 66Met may be predictive of swallowing improvement post pharyngeal electrical stimulation in dysphagic stroke patients. Neurogastroenterol Motil. 2017;29(8); doi: 10.1111/nmo.13062.
 
38.
Mirowska-Guzel D, Gromadzka G, Seniow J, Lesniak M, Bilik M, Waldowski K, et al. Association between BDNF-196 G>A and BDNF-270 C>T polymorphisms, BDNF concentration, and rTMS-supported long-term rehabilitation outcome after ischemic stroke. NeuroRehabilitation. 2013;32(3):573–582; doi: 10.3233/NRE- 130879.
 
39.
Lu H, Zhang T, Wen M, Sun L. Impact of repetitive transcranial magnetic stimulation on post-stroke dysmnesia and the role of BDNF val66Met SNP. Med Sci Monit. 2015;21:761–768; doi: 10.12659/MSM.892337.
 
40.
Pascotini ET, Flores AE, Kegler A., Konzen V, Fornari AL, Arend J, et al. Brain-derived neurotrophic factor levels are lower in chronic stroke patients: a relation with manganese-dependent superoxide dismutase ALA- 16VAL single nucleotide polymorphism through tumor necrosis factor- and caspases pathways. J Stroke Cerebrovasc Dis. 2018;27(11):3020–9; doi: 10.1016/j. jstrokecerebrovasdis.2018.06.032.
 
41.
Colucci-D’amato L, Speranza L, Volpicelli F. Neurotrophic factor BDNF, physiological functions and therapeutic potential in depression, neurodegeneration and brain cancer. Int J Mol Sci. 2020;21(20):7777; doi: 10.3390/ijms21207777.
 
42.
Wu CL, Hwang CS, Chen SD, Yin JH, Yang DI. Neuroprotective mechanisms of brain-derived neurotrophic factor against 3-nitropropionic acid toxicity: therapeutic implications for Huntington’s disease. Ann N Y Acad Sci. 2010;1201:8–12; doi: 10.1111/j.1749-6632.2010. 05628.x.
 
43.
Ventriglia M, Zanardini R, Bonomini C, Zanetti O, Volpe D, Pasqualetti P, et al. Serum brain-derived neurotrophic factor levels in different neurological diseases. Biomed Res Int. 2013;2013:901082; doi: 10.1155/2013/ 901082.
 
44.
Algin A, Erdogan MO, Aydin I, Poyraz MK, Sirik M. Clinical usefulness of brain-derived neurotrophic factor and visinin-like protein-1 in early diagnostic tests for acute stroke. Am J Emerg Med. 2019;37(11), 2051–2054; doi: 10.1016/j.ajem.2019.02.037.
 
45.
Wang Y, Li F, He MJ, Chen SJ. The effects and mechanisms of transcranial ultrasound stimulation combined with cognitive rehabilitation on post-stroke cognitive impairment. Neurol Sci. 2022;43(7):4315–4321; doi: 10.1007/s10072-022-05906-2.
 
46.
Asadollahi M, Nikdokht P, Hatef B, Sadr SS, Sahraei H, Assarzadegan F, et al. Protective properties of the aqueous extract of saffron (Crocus sativus L.) in ischemic stroke, randomized clinical trial. J Ethnopharmacol. 2019;238:111833; doi: 10.1016/j.jep.2019.111833.
 
47.
Dinoff A, Herrmann N, Swardfager W, Liu CS, Sherman C, Chan S, et al. The Effect of exercise training on resting concentrations of peripheral brain-derived neurotrophic factor (BDNF): a meta-analysis. PLoS One. 2016;11(9):e0163037; doi: 10.1371/journal.pone.0163037.
 
48.
Pikula A, Beiser AS, Chen TC , Preis SR, Vorgias D, Decarli C, et al. Serum brain-derived neurotrophic factor and vascular endothelial growth factor levels are associated with risk of stroke and vascular brain injury: Famingham study. Stroke. 2013;44(10):2768–2775; doi: 10.1161/STRO KEAHA.113.001447.
 
49.
El-Tamawy MS, Abd-Allah F, Ahmed SM, Darwish MH, Khalifa HA. Aerobic exercises enhance cognitive functions and brain derived neurotrophic factor in ischemic stroke patients. NeuroRehabilitation. 2014;34(1):209– 213; doi: 10.3233/NRE-131020.
 
50.
de Morais VAC, Tourino MF da S, Almeida AC de S, Albuquerque TBD, Linhares RC , Christo PP, et al. A single session of moderate intensity walking increases brain-derived neurotrophic factor (BDNF) in the chronic post-stroke patients. Top Stroke Rehabil. 2018;25(1):1– 5; doi: 10.1080/10749357.2017.1373500.
 
51.
King M, Kelly LP, Wallack EM, Hasan SMM, Kirkland MC, Curtis ME et al. Serum levels of insulin-like growth factor-1 and brain-derived neurotrophic factor as potential recovery biomarkers in stroke. Neurol Res. 2019;41(4):354–363; doi: 10.1080/01616412.2018. 1564451.
 
52.
Ploughman M, Eskes GA, Kelly LP, Kirkland MC, Devasahayam AJ, Wallack EM, et al. Synergistic benefits of combined aerobic and cognitive training on fluid intelligence and the role of IGF-1 in chronic stroke. Neurorehabil Neural Repair. 2019;33(3):199–212; doi: 10.1177/ 1545968319832605.
 
53.
Wang HY, Zhu CH, Liu DS, Wang Y, Zhang JB, Wang SP, et al. Rehabilitation training improves cognitive disorder after cerebrovascular accident by improving BDNF Bcl-2 and Bax expressions in regulating the JMK pathway. Eur Rev Med Pharmacol Sci. 2021;25(10): 3807–3821; doi: 10.26355/eurrev_202105_25949.
 
54.
Palumbo A, Aluru V, Battaglia J, Geller D, Turry A, Ross M, et al. Music upper limb therapy–integrated provides a feasible enriched environment and reduces post-stroke depression: a pilot randomized controlled trial. Am J Phys Med Rehabil. 2022;101(10):937–946; doi: 10.1097/PHM.0000000000001938.
 
55.
Cui Q, Wei W. Comparison of the efficacy of Trazodone hydrochloride tablets alone and in combination with press-needles in the treatment of post-stroke depression. J Pak Med Assoc. 2023;73(4):879–81; doi: 10.47391/ JPMA.6487.
 
56.
Boyne P, Meyrose C, Westover J, Whitesel D, Hatter K, Reisman DS, et al. Exercise intensity affects acute neurotrophic and neurophysiological responses poststroke. J Appl Physiol. 2019;126(2):431–443; doi: 10.1152/ japplphysiol.00594.2018.
 
57.
Hsu CC , Fu TC , Huang SC, Chen CPC, Wang JS. Increased serum brain-derived neurotrophic factor with high-intensity interval training in stroke patients: a randomized controlled trial. Ann Phys Rehabil Med. 2021; 64(4):101385; doi: 10.1016/j.rehab.2020.03.010.
 
58.
de Assis GG. BDNF and neurodegeneration: the rise of the exercise as a preventive care. Biomed J Sci Tech Res. 2020;25(5):19502–1954; doi: 10.26717/bjstr.2020.25. 004265.
 
59.
de Assis GG, Cięszczyk P. Exercise – a unique endogenous regulator of irisin, BDNF, leptin and cortisol against depression. Balt J Health Phys Act. 2020;12(4): 1–8; doi: 10.29359/BJHPA.12.4.01.
 
60.
Murawska-Ciałowicz E, Wiatr M, Ciałowicz M, de Assis GG, Borowicz W, Rocha-Rodrigues S, et al. Bdnf impact on biological markers of depression – role of physical exercise and training. Int J Environ Res Public Health. 2021;18(14):7553; doi: 10.3390/ijerph18147553.
 
61.
Xu B. BDNF (I)rising from Exercise. Cell Metab. 2013; 18(5):612–614; doi: 10.1016/j.cmet.2013.10.008.
 
62.
Wrann CD, White JP, Salogiannnis J, Laznik-Bogoslavski D, Wu J, Ma D, et al. Exercise Induces hippocampal BDNF through a PGC-1 /FNDC5 pathway. Cell Metab. 2013;18(5):649–659; doi: 10.1016/j.cmet.2013.09.008.
 
63.
Davies AM, Thoenen H, Barde YA. The response of chick sensory neurons to brain-derived neurotrophic factor. J Neurosci. 1986;6(7):1897–904; doi: 10.1523/ jneurosci.06-07-01897.1986.
 
64.
Ip NY, Stitt TN, Tapley P, Klein R, Glass DJ, Fandl J, et al. Similarities and differences in the way neurotrophins interact with the Trk receptors in neuronal and nonneuronal cells. Neuron. 1993;10(2):137–49; doi: 10.1016/0896-6273(93)90306-C.
 
65.
Diniz BS, Reynolds CF, Begley A, Dew MA, Anderson SJ, Lotrich F, et al. Brain-derived neurotrophic factor levels in late-life depression and comorbid mild cognitive impairment: a longitudinal study. J Psychiatr Res. 2014;49:96–101; doi: 10.1016/j.jpsychires.2013.11.004.
 
66.
Szuhany KL, Otto MW. Assessing BDNF as a mediator of the effects of exercise on depression. J Psychiatr Res. 2020;123:114–8; doi: 10.1016/j.jpsychires.2020.02.003.
 
67.
Li YJ, Xu M, Gao ZH, Wang YQ, Yue Z, Zhang YX, et al. Alterations of serum levels of BDNF-related miRNAs in patients with depression. PLoS One. 2013;8(5):e63648; doi: 10.1371/journal.pone.0063648.
 
68.
Keyan D, Bryant RA. Role of BDNF val66met polymorphism in modulating exercised-induced emotional memories. Psychoneuroendocrinology. 2017;77:150– 157; doi: 10.1016/j.psyneuen.2016.12.013.
 
69.
Chen ZY, Jing D, Bath KG, Ieraci A, Khan T, Siao CJ, et al. Genetic variant BDNF (Val66Met) polymorphism alters anxiety-related behavior. Science. 2006;314(5796): 140–143; doi: 10.1126/science.1129663.
 
70.
Mandelman SD, Grigorenko EL. BDNF Val66Met and cognition: all, none, or some? A meta-analysis of the genetic association. Genes Brain Beha. 2012;11(2):127– 136; doi: 10.1111/j.1601-183X.2011.00738.x.
 
71.
Uegaki K, Kumanogoh H, Mizui T, Hirokawa T, Ishikawa Y, Kojima M. BDNF binds its pro-peptide with high affinity and the common val66met polymorphism attenuates the interaction. Int J Mol Sci. 2017;18(5): 1042; doi: 10.3390/ijms18051042.
 
72.
Garcia-Rodriguez CE, Mesa MD, Olza J, Buccianti G, Perez M, Moreno-Torres R, et al. Postprandial glucose, insulin and gastrointestinal hormones in healthy and diabetic subjects fed a fructose-free and resistant starch type IV-enriched enteral formula. Eur J Nutr. 2013; 52(6):1569–1578; doi: 10.1007/s00394-012-0462-x.
 
eISSN:1899-1955
Journals System - logo
Scroll to top