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Abstract
Purpose. The purpose of this study is to investigate how jumping patterns evolve throughout the physical development of 
basketball players aged 13 to 16 years. Understanding these changes is crucial for performance evaluation and injury risk 
assessment in young athletes.
Methods. Jumping performance was assessed using video analysis and the OptoJump system during the Countermovement 
Jump (CMJ) test. Participants included male basketball players aged 13 to 16 years, categorised into age groups of 13, 14, 15, 
and 16 years. Key kinematic parameters were measured. Differences between adjacent age groups were assessed. Logistic 
regression analysis was conducted to identify significant factors contributing to jump performance.
Results. Results indicated that from ages 14 to 15, players exhibited a decrease in ankle dorsiflexion, likely due to ankle 
plantar flexor stiffness and imbalances in muscle-tendon development. By age 16, however, athletes began to display a more 
consolidated jumping pattern, characterised by increased ankle dorsiflexion and reduced trunk involvement. In contrast, 
younger players relied more heavily on trunk movement and limited ankle dorsiflexion, likely as compensatory mechanisms 
for insufficient lower limb power. Logistic regression confirmed that knee and ankle dorsiflexion, along with knee valgus, 
significantly contributed to jump performance.
Conclusions. This study highlights the importance of monitoring jumping kinematics in young basketball players to 
optimise performance and mitigate injury risks. Additionally, an interpretable machine learning model based on the Naive 
Bayes method was developed to predict jump performance in young athletes.
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Age-related changes in countermovement jump performance and kinematics 
in young basketball athletes: a cross-sectional study

Introduction

Basketball is widely recognised to be a sport char-
acterised by repetitive high-intensity jumping, sprint-
ing, and change-of-direction movements, so requiring 
athletes to be capable of producing the relevant power [1].

Vertical jumping is a key skill in basketball, neces-
sary for assessing athletic performance, power and for 
conducting an injury risk assessment in athletes [2]. 
Specifically, the countermovement jump (CMJ) is fre-

quently used to assess and monitor lower-body neuro-
muscular function due to its ease of implementation, 
for the low risk of injury, and the fact that it can be 
performed in ecological conditions, thus avoiding the 
need for athletes to perform in unfamiliar environ-
ments. Despite the availability of many other tests, the 
CMJ is likely to be a more natural movement pattern 
for many athletes, and has become commonplace in 
clinical practice and research [3].
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Basketball training and competitive performance 
expose athletes to substantial risk of injury due to the 
sport’s intensive physical requirements. Injuries are 
often caused by a combination of player contact and 
mechanical loads from explosive movements, with the 
most common types being ligamentous injuries in-
volving the knee (anterior cruciate ligament rupture) 
and the ankle (sprains) [1]. Risk factors include both 
circumstantial causes, such as contact with another 
player, overtraining, and insufficient warm-up, as well 
as physiological features, such as asymmetries in ankle 
range of motion and isokinetic strength, increased body 
mass index (BMI), neuromuscular imbalances, and 
prior injuries [1]. The majority of the above-mentioned 
aetiological factors can be identified and corrected. 
Therefore, there is a need for greater awareness of the 
importance of assessing potential injury-related fac-
tors in athletes during the pre-, intra-, and post-season 
periods. This includes the use of specific functional 
evaluations, such as the countermovement jump (CMJ) 
test, which can provide valuable insights to guide timely 
and effective interventions. Parameters extracted from 
jump tests could help to define areas for improvement, 
provide insights into the effects of a completed meso-
cycle, and guide sports professionals who work with 
athletes during recovery protocols [4]. These parame-
ters are particularly significant for children and teen-
agers, as they are at a critical stage of development to 
acquire movement patterns in the most effective and 
efficient way possible.

Jumping performance and pattern vary depend-
ing on the level of training and the age of the athletes. 
In particular, a recent study reported that younger bas-
ketball athletes show an immature jumping pattern, 
characterised by a greater use of the ankle and less 
flexion of the hips and knees, probably due to a lack 
of lower quadriceps strength [5]. As reported by lit-
erature, there is a difference in the motor pattern be-
tween children and adults [6], which is why health 
professionals and coaches should take into account 
the age and physical capacities of the athlete in order to 
provide an appropriate training program, injury pre-
vention strategies and, in case of injury, a correct re-
habilitation protocol.

The available literature is poorly focused on stud-
ies conducted on adolescent basketball players, while 
some of the existing research addresses younger ath-
letes or subjects involved in other sports. Consequently, 
there is a lack of data on how kinematic characteris-
tics of the jumping phase evolve in basketball athletes 
throughout key developmental stages for sport perfor-
mance [7].

The primary aim of this study was to assess how the 
kinematic and performance parameters of jumping, 
extracted through video analysis and an OptoJump 
system, change with player growth and development 
from 13 to 16 years old. As a secondary goal, we inves-
tigated which parameters were the most valuable for 
accurately characterising an athlete’s overall perfor-
mance for each specific age group between 13 and 16 
years old. Finally, we aimed to develop an interpret-
able machine learning model for classifying jumping 
performance based on biomechanical features, which 
could be useful for trainers and physiotherapists to 
evaluate the jumping techniques.

Material and methods

Study population

The study population consisted of male athletes from 
the Azzurra basketball club in Trieste, who were com-
peting in the elite category championship of the current 
year. The inclusion criteria were: athletes required to 
be part of a specific age-band basketball team based on 
their birth year: 2007 (Under-16), 2008 (Under-15), 
2009 (Under-14), and 2010 (Under-13) and the informed 
consent signed by the player’s parents. The sole exclu-
sion criterion was the presence of prior severe injuries 
or the presence of lower limb pain at the time of the test 
that could impede the appropriate execution of the 
jump. That condition was assessed by a qualified phys-
iotherapist. The included subjects were divided into 
four age-based sub-groups: under 16 (group 4), under 
15 (group 3), under 14 (group 2), under 13 (group 1). 
For all included participants, anthropometric charac-
teristics (height, weight, dominant limb) and additional 
information (years of basketball played and dominant 
side) were collected, measurements of kinematic pa-
rameters were obtained via an OptoJump system, and 
video analysis during CMJ was performed. All the ath-
letes on the team were enrolled in the study, yielding 
a total of 50 subjects. Three of them were excluded as 
they presented consistent lower limb pain at the time 
of the test. The final sample comprised 3 left-dominant 
side subjects. Based on the specified criteria, the tested 
sample comprises 47 subjects divided into four sub-
groups as follows: group 1 (11 subjects), group 2 (11 sub-
jects), group 3 (13 subjects), group 4 (12 subjects). The 
number of subjects in each subgroup reflects the typi-
cal roster size of a youth basketball team. We conducted 
an a priori power analysis to determine the appropri-
ate sample size for this study. The significance level ( ) 
was set at 0.017 (considering Bonferroni correction, 
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as detailed below), and the desired power (1- ) at 0.80. 
Based on existing literature, Cohen’s d was set at a value 
commonly referred to as ‘large’, as a substantial differ-
ence between age groups was expected [8]. The analy-
sis determined that an optimal sample size of 13 sub-
jects per group would be sufficient, aligning well with 
our enrolment process. Moreover, the sample size is in 
accordance with previous literature, considering several 
works regarding kinematic and kinetic jumping evalu-
ation, which had the same goals as our investigation [9].

This study adheres to the guidelines developed by 
Strengthening the Reporting of Observational Studies 
in Epidemiology (STROBE) to promote clear and thor-
ough reporting of observational research [10].

Experimental procedure

The testing protocol was carried out in ecological 
conditions, on a regular basketball court. All measure-
ments were taken in the afternoon, during the athletes’ 
usual training hours, to ensure consistency with their 
typical daily routine. The assessments were performed 
in April, during a two-week break from matches, before 
entering the final National phase. Participants were 
asked to perform three CMJs, with an appropriate rest 
between the sets to allow for full recovery. Before the 
test, all the athletes completed a proper 15-minute 
warm-up, which included 5 min of ballistic move-
ments followed by 10 min of running drills with in-
creasing difficulty and intensity. After the warm-up, 
the seven reflective markers were applied to the subject, 
one for each lateral malleoli, one immediately below the 
knee lateral epicondyle of both knees, one on each great 
trochanter of the femur, and the last one on the xiphoid 
process of the sternum. The positioning points were 
established based on existing literature in the field, 
as well as the specific objectives of the analysis [11]. The 
participants were guided to the testing area, which 
was set up in one corner of the court. The testing area 
consisted of an OptoJump system and three GoPro 
cameras (motion capture (MoCap) system) positioned 
200 centimetres from the athlete’s standing position, 
fixed in the middle between the two OptoJump bars: 
one in a frontal position and two in lateral positions, 
one to the right side and one to the left side of the ath-
lete, respectively [12].

CMJ test

The countermovement jump (CMJ) involved the par-
ticipants lowering themselves from an initial stand-
ing position to a self-selected squat position, followed 

immediately by a vertical jump. Participants were en-
couraged to perform the eccentric phase of the jump 
as quickly as possible, with the depth of the counter-
movement phase being self-selected by the participant 
to maximise the jump height. Before performing the 
jump, participants were instructed to achieve the great-
est vertical height possible while observing two restric-
tions: keeping the hands on the hips at all times, thus 
avoiding upper-body interference, and jumping and 
landing on the same spot, to ensure that the jump was 
completely vertical [2].

Acquisition devices

The OptoJump photoelectric cells (Microgate, Bol
zano, Italy) consist of two parallel bars connected to 
a PC. One bar acts as a transmitter unit containing 96 
light emitting diodes positioned 0.003 m above the 
ground, while the other acts as the receiver unit. When 
the light is interrupted by an individual’s foot during 
a jump, the timer in the unit is triggered and starts re-
cording with a resolution of 1 ms, which can be used to 
measure different parameters such as contact time (CT) 
as the total time that the light is interrupted, f light 
time (FT) as the total time between interruptions, jump 
height, and many other features. This system is cur-
rently heralded as the benchmark device in sport sci-
ence thanks to its high accuracy, consistency across 
different testing conditions and the fact that it allows 
for testing and data collection in real sports environ-
ments, such as basketball courts and soccer fields [13].

In addition, through the MoCap system described 
above and the reflective markers, trunk flexion, knee 
flexion, ankle dorsiflexion and knee valgus parame-
ters were measured. Considering the athlete’s stand-
ing starting position as the reference point, we calcu-
lated the range of motion (ROM) as the difference 
between the initial angle and the maximum angle 
reached during the propulsive phase of the jump. For 
the ankle, we considered the amount of dorsif lexion 
during the downward phase. In particular, the angles 
were measured from the initial standing position to 
the maximum dorsiflexion reached in the downward 
phase. All data and angle measurements of the above 
parameters were extracted using the Kinovea software 
(v. 0.8.15, Kinovea, Bordeaux, France). It is important 
to underline that many previous studies have high-
lighted the reliability and validity of video analysis 
feature collection using the Kinovea software [14]. The 
described testing setting is reported in Figure 1.
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Figure 1. Testing area composed of OptoJump system 
and three GoPro cameras positioned 200 cm  

from athlete’s standing position

Statistical analysis

The statistical analysis was performed in MAT-
LAB (MathWorks Inc., Natick, MA) (v. R2024b). All 
the parameters were extracted by considering the av-
erage of three jumps. As the first step, the normality 
of the variables was assessed using the Kolmogorov–
Smirnov test. The normal variables are presented as 
mean and standard deviation (SD) and the non-nor-
mal variables as median and range.

For the comparison between age groups, a Student’s 
t-test for the normal variables and a Wilcoxon-rank test 
for the non-normal variables were performed looking 
for differences between adjacent age groups only. Con-
sidering the Bonferroni correction for multiple com-
parisons, a p < 0.017 was considered statistically sig-
nificant.

In addition, a univariate logistic regression was used 
to identify, for each age group, the parameters related to 
‘good jumping performance’, describing it as a height 
of the jump greater than the average of the correspond-
ing group. In this analysis, a p < 0.05 was considered 
statistically significant.

Machine learning models

Machine learning (ML) models were developed to 
classify between ‘good’ and ‘bad’ jumps. The outcome 
was described using the previously specified criteria. 
The feature selection process was based on Informa-
tion Gain, a method that ranks the parameters in terms 
of ‘entropy reduction’ (or ‘information gain’) obtained 
by including each of them and fixing a threshold of 0.15 
[15]. The Naive Bayes, classification tree and logistic 
regression methods were employed to produce inter-

pretable models capable of differentiating between the 
two possible outcomes (‘good jumping performance’, 
‘bad jumping performance’), with interpretability be-
ing a crucial factor in creating predictive models for 
the healthcare field [16]. Performance parameters for 
results evaluation were obtained using 5-fold cross-
validation. In particular, Sensitivity was calculated as 
the proportion of true positives among all positive in-
stances in the data, and Specificity as the proportion 
of true negatives among all negative instances. This 
method involves splitting the dataset into five equal-
sized groups and conducting iterations equal to the 
number of subdivisions, choosing in each of the itera-
tions a different group as the test set, ensuring that no 
information related to any feature is lost throughout 
the process. 5-fold cross-validation is a widely accepted 
technique that helps mitigate overfitting and provides 
a more reliable estimate of a model’s predictive per-
formance on unseen data. All analyses were carried 
out in the Python Orange Data Mining library and tool-
box (v. 3.37.0) [17].

Results

The anthropometric characteristics for each sub-
group are reported in Table 1.

Age-specific characteristics of jump

As stated, the main aspect of this analysis was the 
evaluation of statistically relevant differences between 
age groups, considering the Bonferroni correction for 
multiple comparisons (p < 0.017). In the comparison be-
tween group 1 and group 2, considering the Bonfer-
roni correction, no statistically significant differences 
were observed. Among group 2 and group 3 (Table 3), 
ankle dorsiflexion on both the dominant side and non-
dominant side showed a statistically significant dif-
ference (p = 0.01; p = 0.007), respectively. Finally, in 

Table 1. Sample characteristics for each of the sub-groups:  
11 subjects for group 1, 11 subjects for group 2, 13 subjects  

for group 3 and 12 subjects for group 4 were tested

Sample
Group 1 
(n = 11) 

means ± SD

Group 2  
(n = 11) 

means ± SD

Group 3  
(n = 13) 

means ± SD

Group 4  
(n = 12) 

means ± SD

Age (years) 13.4 ± 0.3 14.6 ± 0.4 15.3 ± 0.5 16.4 ± 0.4
Weight (kg) 48 ± 6.82 62 ± 8.00 62 ± 6.02 75 ± 7.96
Height (cm) 163 ± 7.48 176 ± 8.14 176 ± 6.04 187 ± 6.31
BMI (kg/m2) 18 ± 1.25 20 ± 1.54 20 ± 1.10 21 ± 1.38

BMI – body mass index



HUMAN MOVEMENT

A. Bonini et al., Age-related changes in CM jump

119
Human Movement, Vol. 26, No 3, 2025

Table 2. Comparison between group 1 and group 2

Sample
Group 1
(n = 11)

Group 2 
(n = 11)

p-value

BMI (kg/m2) 18.15 ± 1.25 19.69 ± 1.54 0.02
CMJ height (cm) 30.57 ± 4.67 28.49 ± 5.55 0.35
Trunk flexion (°) 43.67 ± 9.33 48.39 ± 9.10 0.26
Dominant knee flexion (°) 86.40 ± 9.55 86.09 ± 6.32 0.93
Non-dominant knee flexion (°) 83.60 ± 8.09 87.61 ± 5.85 0.21
Dominant ankle dorsiflexion (°) 28.87 ± 3.93 26.85 ± 7.25 0.44
Non-dominant ankle dorsiflexion (°) 34.73 ± 5.05 28.18 ± 7.09 0.03
Dominant knee valgus (°) –17.17 [–25.33, 4.33] –13.00 [–36.00, 15.00] 0.73
Non-dominant knee valgus (°) –12.83 [–21.67, 6.67] –21.33 [–31.67, –8.00] 0.05

BMI – body mass index, CMJ – countermovement jump
The table presents the mean ± standard deviation for normally distributed variables and median and range for non-normally 
distributed variables. 
* statistically significant differences (p < 0.017)

Table 3. Comparison between group 2 and group 3

Sample
Group 2 
(n = 11)

Group 3 
(n = 13)

p-value

BMI (kg/m2) 19.69 ± 1.54 19.75 ± 1.11 0.91
CMJ height (cm) 28.49 ± 5.55 33.25 ± 3.60 0.02
Trunk flexion (°) 48.39 ± 9.10 57.36 ± 9.90 0.03
Dominant knee flexion (°) 86.09 ± 6.32 88.90 ± 7.63 0.34
Non-dominant knee flexion (°) 87.61 ± 5.85 89.67 ± 7.28 0.46
Dominant ankle dorsiflexion (°) 26.85 ± 7.25 20.18 ± 5.00 0.01*
Non-dominant ankle dorsiflexion (°) 28.18 ± 7.09 20.92 ± 4.88 0.007*
Dominant knee valgus (°) –13.00 [–36.00, 15.00] –14.33 [–36.67, 4.33] 0.95
Non-dominant knee valgus (°) –21.33 [–31.67, –8.00] –18.67 [–37.33, 6.00] 0.52

BMI – body mass index, CMJ – countermovement jump
The table presents the mean ± standard deviation for normally distributed variables and median and range for non-normally 
distributed variables.
* statistically significant differences (p < 0.017)

Table 4. Comparison between group 3 and group 4

Sample
Group 3 
(n = 13)

Group 4 
(n = 12)

p-value

BMI (kg/m2) 19.75 ± 1.11 21.30 ± 1.39 0.005*
CMJ height (cm) 33.25 ± 3.60 36.83 ± 6.04 0.08
Trunk flexion (°) 57.36 ± 9.90 46.97 ± 8.85 0.01*
Dominant knee flexion (°) 88.90 ± 7.63 79.42 ± 8.61 0.008*
Non-dominant knee flexion (°) 89.67 ± 7.28 78.67 ± 9.90 0.004*
Dominant ankle dorsiflexion (°) 20.18 ± 5.00 30.39 ± 2.78 < 0.001*
Non-dominant ankle dorsiflexion (°) 20.92 ± 4.88 30.22 ± 3.48 < 0.001*
Dominant knee valgus (°) –14.33 [–36.67, 4.33] –13.67 [–19.67, 5.67] 0.66
Non-dominant knee valgus (°) –18.67 [–37.33, 6.00]    –9.83 [–23.00, 6.67] 0.11

BMI – body mass index, CMJ – countermovement jump
The table presents the mean ± standard deviation for normally distributed variables and median and range for non-normally 
distributed variables. 
* statistically significant differences (p < 0.017)
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Table 5. Logistic regression for group 1

p-value Odds Ratio CI 95% lower bound CI 95% upper bound

Trunk flexion (°) 0.45 0.978 0.921 1.037
Dominant knee flexion (°) 0.02* 1.112 1.016 1.217
Non-dominant knee flexion (°) 0.29 1.041 0.967 1.120
Dominant ankle dorsiflexion (°) 0.04* 1.188 0.999 1.413
Non-dominant ankle dorsiflexion (°) 0.40 1.053 0.933 1.189
Dominant knee valgus (°) 0.94 1.002 0.941 1.067
Non-dominant knee valgus (°) 0.91 0.996 0.934 1.063
BMI (kg/m2) 0.14 0.634 0.343 1.173

BMI – body mass index
The p-value, odds ratio (OR), and 95% confidence intervals (CI) for the lower and upper bounds are provided for each variable. 
* statistically significant correlations (p < 0.05)

Table 6. Logistic regression for group 2

p-value Odds Ratio CI 95% lower bound CI 95% upper bound

Trunk flexion (°) 0.02* 0.897 0.816 0.985
Dominant knee flexion (°) 0.28 1.065 0.950 1.194
Non-dominant knee flexion (°) 0.17 1.083 0.965 1.215
Dominant ankle dorsiflexion (°) 0.17 1.083 0.967 1.213
Non-dominant ankle dorsiflexion (°) 0.02* 1.188 1.027 1.374
Dominant knee valgus (°) 0.49 1.019 0.967 1.073
Non-dominant knee valgus (°) 0.41 1.042 0.944 1.150
BMI (kg/m2) 0.02* 0.505 0.285 0.894

BMI – body mass index
The p-value, odds ratio (OR), and 95% confidence intervals (CI) for the lower and upper bounds are provided for each variable. 
* statistically significant correlations (p < 0.05)

the comparison between group 3 and group 4 (Table 4), 
a statistically significant difference was inferred for 
the following features: BMI (p = 0.005), trunk flexion 
(p = 0.01), knee flexion to both the dominant and non-
dominant side (p = 0.008; p = 0.004, respectively) and 
ankle dorsiflexion to both the dominant and non-dom-
inant side (p < 0.001; p < 0.001, respectively).

Jump performance for age groups

A univariate logistic regression analysis was con-
ducted to evaluate the association between features 
extracted from both the OptoJump system and video 
analysis, with athletic performance in terms of a ‘good’ 
and ‘bad’ jump, across each age group, considering 
p < 0.05 to be statistically significant.

For group 1 (Table 5), significant correlations be-
tween dominant side knee flexion (p = 0.02) and dom-
inant side ankle dorsiflexion (p = 0.04) with the out-
come were observed. For group 2 (Table 6), correlations 
between trunk flexion (p = 0.02), non-dominant side 
ankle dorsiflexion (p = 0.02) and BMI (p = 0.02) with 
the outcome were observed. For group 3 (Table 7), a cor-

relation between non-dominant side knee valgus (p = 
0.02) with the outcome was observed. Lastly, for group 4 
(Table 8), correlations between non-dominant side knee 
flexion (p = 0.02) and dominant side ankle dorsiflex-
ion (p = 0.02) with the outcome were observed.

Performance predictive model for group 1

Despite having developed models for each of the 
subgroups, we focused on group 1, considering their 
thirty-three jumps, as this group was composed of the 
youngest athletes with the greatest room for interven-
tion and subsequent improvement in motor skills [18]. 
The application of the Information Gain criterion with 
a threshold fixed at 0.15 highlighted the following 
features as valuable for the subsequent model devel-
opment: dominant side knee flexion (IG = 0.34), domi-
nant side ankle dorsiflexion (IG = 0.19), non-dominant 
side knee valgus (IG = 0.17), dominant side knee valgus 
(IG = 0.15). The Naive Bayes model demonstrated su-
perior performance compared to other models, achiev-
ing an AUC of 84%, accuracy of 79%, F1 score of 81%, 
precision of 83%, sensitivity of 79%, and specificity 
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Table 7. Logistic regression for group 3

p-value Odds Ratio CI 95% lower bound CI 95% upper bound

Trunk flexion (°) 0.15 1.053 0.982 1.130
Dominant knee flexion (°) 0.85 0.992 0.915 1.076
Non-dominant knee flexion (°) 0.95 1.003 0.925 1.088
Dominant ankle dorsiflexion (°) 0.48 1.049 0.920 1.196
Non-dominant ankle dorsiflexion (°) 0.19 1.097 0.954 1.260
Dominant knee valgus (°) 0.51 1.016 0.970 1.064
Non-dominant knee valgus (°) 0.02* 1.070 1.013 1.130
BMI (kg/m2) 0.82 1.071 0.589 1.948

BMI – body mass index
The p-value, odds ratio (OR), and 95% confidence intervals (CI) for the lower and upper bounds are provided for each variable. 
* statistically significant correlations (p < 0.05)

Table 8. Logistic regression for group 4

p-value Odds Ratio CI 95% lower bound CI 95% upper bound

Trunk flexion (°) 0.12 0.945 0.878 1.016
Dominant knee flexion (°) 0.05 1.089 0.997 1.191
Non-dominant knee flexion (°) 0.02* 1.107 1.017 1.206
Dominant ankle dorsiflexion (°) 0.13 1.143 0.962 1.359
Non-dominant ankle dorsiflexion (°) 0.02* 1.252 1.032 1.518
Dominant knee valgus (°) 0.25 0.955 0.883 1.034
Non-dominant knee valgus (°) 0.86 0.994 0.934 1.058
BMI (kg/m2) 0.24 1.370 0.809 2.320

BMI – body mass index
The p-value, odds ratio (OR), and 95% confidence intervals (CI) for the lower and upper bounds are provided for each variable. 
* statistically significant correlations (p < 0.05)

Table 9. Performance of Naive Bayes, logistic regression and classification tree models for 2010 group

Model
Group 1

AUC CA F1 precision sensitivity specificity

Naive Bayes 0.84 0.79 0.81 0.83 0.79 0.79
Logistic regression 0.74 0.70 0.74 0.74 0.74 0.64
Classification tree 0.66 0.64 0.67 0.70 0.63 0.64

This table shows the performance metrics of different machine learning models evaluated for group 1.  
The models assessed include Naive Bayes, logistic regression, and classification tree.  
The metrics reported are area under the curve (AUC), classification accuracy (CA), F1-score, precision, sensitivity,  
and specificity.

of 79%, outperforming classification tree and logistic 
regression across all metrics (Table 9). Furthermore, 
the model accurately classifies ‘poor jumping perfor-
mance (0)’ with a success rate of 78.6% and ‘good jump-
ing performance (1)’ with a success rate of 78.9%. All 
the evaluation metrics reported were obtained using 
the 5-fold cross-validation criterion. 

Lastly, the nomogram of the Naive Bayes model is 
depicted in Figure 2.

Discussion

Jumping is undoubtedly an essential motor abil-
ity in basketball and an important skill to be evalu-
ated in injury risk assessment and performance tests 
[5, 19]. Among all the possible jump tests, the CMJ was 
chosen for this study because it is easy to perform, has 
a low risk of injury, and appears to be a natural move-
ment for athletes [20]. Moreover, the CMJ is widely used 
as an indicator of athletes’ power performance [21]. 
Although prior research has suggested performance 



HUMAN MOVEMENT

A. Bonini et al., Age-related changes in CM jump

122
Human Movement, Vol. 26, No 3, 2025

and pattern differences based on athletes’ ages, there 
is limited evidence regarding how the jumping pattern 
evolves during growth. Furthermore, the identification 
of the parameters that most effectively characterise 
overall performance and condition remains less ex-
plored across specific age groups.

Our findings contribute to the characterisation of 
kinematic pattern progression and to the identification 
of parameters predictive of good performance. Firstly, 
the analysis showed that as players mature from 14 to 
15 years of age, they increasingly execute jumps with 
reduced dominant side ankle dorsiflexion (p = 0.01) 
and non-dominant side ankle dorsiflexion (p = 0.007). 
This trend may be attributed to the stiffness of the 
plantar flexors and the posterior kinetic chain com-
monly observed during this phase of physical develop-
ment, which is due to the imbalance resulting from 
changes in the capacities of muscles and tendons [22]. 
Another relevant factor to consider is the exposure to 
intense physical activity without adequate personalised 
supervision [23]. This lack of supervision, even at a young 
age, may contribute to the development of movement 
patterns that, although natural, are suboptimal, as ath-
letes might not learn or consolidate proper techniques 
during critical developmental stages.

In contrast, the comparison between the under 15 
group and the under 16 group showed that physical de-
velopment brings greater ankle dorsiflexion (Table 4, 
dominant side ankle dorsiflexion p < 0.001, non-dom-
inant side ankle dorsiflexion p < 0.001) and reduced 
trunk involvement (Table 4, trunk flexion p = 0.01). 
This group also demonstrates less knee flexion bilater-
ally (Table 4, dominant side knee dorsiflexion p = 0.008, 
non-dominant side knee dorsiflexion p = 0.004), which 
appears to result from an increased contribution of the 
ankle. This adaptation is supported by a more stable 

physical profile, with improved power balance between 
the posterior and anterior kinetic chains. The greater 
use of the trunk in younger athletes compared to more 
mature individuals is a pattern previously demonstrat-
ed by Baellow et al. [24], who showed that adolescents 
employ trunk flexion as a compensatory strategy, par-
ticularly when lower-limb power is insufficient. Our 
results concerning specific and remarkable differences 
in jumping patterns related to the age of the players 
are in line with previous findings in which muscular 
performance differences were highlighted [25]. In par-
ticular, Dotan et al. suggest that younger athletes differ 
from adults in muscle activation patterns, notably due 
to their less efficient recruitment of higher-threshold 
type-II motor units, leading to distinct neuromuscular 
adaptations and performance outcomes.

The results of the logistic regression analysis pro-
vided important information about the parameters re-
lated to good jumping performance within each age 
group (p < 0.05 was considered statistically signifi-
cant). The highlighted features are also consistent with 
the age of the players and with previous literature evi-
dence [26, 27]. In fact, greater knee flexion (Table 5, 
dominant side knee f lexion p = 0.02; Table 8, non-
dominant side knee flexion p = 0.02), greater ankle 
mobility (Table 5, dominant side ankle dorsif lexion 
p = 0.04; Table 6, non-dominant side ankle dorsiflex-
ion p = 0.02; Table 8, non-dominant side knee flexion 
p = 0.02) and better control of joint alignment, repre-
sented by the knee valgus closer to a 0° degree (Table 7, 
non-dominant side knee valgus p = 0.02) showed sig-
nificant correlations with good jumping performance. 
For group 2, an inverse significant correlation can be 
seen with the outcome of the trunk flexion parameter 
(p = 0.02). As explained, young players are prone to 
developing a jumping pattern with remarkable use of 

Figure 2. Naive Bayes nomogram for the under-13 group  
This nomogram represents the predictive model obtained using the Naive Bayes method
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the trunk in order to make up for an imbalance in mus-
cle and tendon capacities due to in-progress physical 
development [22]. Nevertheless, this compensatory 
movement seems still not to be consolidated and there-
fore produces a negative effect on the performance rather 
than contributing to positive jump performance.

Although sport kinematics analysis is a field in 
which the possible use of AI methods is reported in the 
literature, only sparse research has shown a practical 
application, especially regarding interpretable models 
[28]. Therefore, this study also aimed to develop an in-
terpretable machine learning model that can be prac-
tically applied by trainers and physiotherapists, allow-
ing targeted analysis of specific jump characteristics 
closely associated with gesture performance. This as-
pect is crucial as it provides a practical tool to evaluate 
whether the movement pattern shown by an athlete, 
not only during the jump itself but also in preparatory 
exercises, is correlated with successful jump perfor-
mance.

After having compared the performances of the mod-
els obtained with the aforementioned techniques, the 
Naive Bayes model showed the best results. The model 
is based on Bayes’ theorem, which provides a proba-
bilistic framework for predicting class membership 
based on prior knowledge and observed data. The Naive 
Bayes classifier operates under the assumption of con-
ditional independence among features, which simpli-
fies the computation of probabilities. This method, 
which has the advantage of requiring a relatively small 
amount of training data for an accurate classification, 
has been successfully applied in various domains, in-
cluding medical diagnosis [29]. The nomogram rep-
resenting the Naive Bayes model shows the selected 
features in order of importance: dominant side knee 
flexion, dominant side ankle dorsiflexion, dominant 
side knee valgus and non-dominant side knee valgus. 
The trend of the parameters appears to be in agreement 
with previous studies as a knee flexion around 90° 
(predominantly regarding the dominant side) [30], 
a major ankle dorsiflexion [27] and closer to zero de-
grees of knees valgus seem to be related to good jump-
ing performance [26].

This study has some limitations, including the se-
lection of athletes from a single basketball club. Never-
theless, the sample size and characteristics reflect the 
real context of basketball players of the specified age 
involved in an elite category championship. Addition-
ally, the use of a single camera per plane of movement 
presents inherent constraints associated with 2D mo-
tion analysis, as it does not capture out-of-plane move-
ments. Other kinetic variables (e.g. power, FT-CT) were 

not assessed to better focus on the important biome-
chanical and kinetic features evaluated. Furthermore, 
data on individual maturation status, which could 
influence physical performance measures, were not 
included. Future research should aim to incorporate 
multi-camera systems, kinetic assessments, and matu-
ration data to enhance the comprehensiveness of the 
movement analysis.

Conclusions

Our results showed how jumping patterns progres-
sively change with the age of athletes between 13 and 
16 years. As athletes mature, their jumping pattern 
evolves, showing increased ankle dorsif lexion (p < 
0.001) and reduced trunk involvement (p = 0.01), with 
the latter likely reflecting a compensatory strategy 
adopted by younger athletes to counteract limited lower 
limb power. We further identified crucial kinematic 
parameters linked to optimal jumping performance 
within specific age groups. We also developed an in-
terpretable machine learning model (AUC 84%, accu-
racy of 79%, sensitivity of 79%, specificity of 79%) to 
predict jumping performance based on kinematic pa-
rameters, which could be a valuable tool for trainers 
and physiotherapists.
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